Refine Your Search

Search Results

Viewing 1 to 18 of 18
Technical Paper

Development of Diesel Combustion for Commercial Vehicles

1997-08-06
972685
Historically the high speed diesel engine for commercial vehicles has been developed along with its combustion system in compliance with political and economical changes. After the 1970's, stricter exhaust emission regulations and fuel economy requirements induced combustion developments and application of turbocharged and inter cooled engines. From the late 1980's, high pressure fuel injection has been investigated and recognized as an essential tool for lowering emissions especially of particulate matter. Although turbulence effects on both in-cylinder air motion and during the combustion process are quite effective, they show different phenomena in conventional and advanced high pressure fuel injection systems. In the 1990's, multiple injection with high pressure has been attempted for further reduction of NOx and particulate matter.
Technical Paper

Research of the DI Diesel Spray Characteristics at High Temperature and High Pressure Ambient

2007-04-16
2007-01-0665
In order to clarify the diesel fuel spray characteristics inside the cylinder, we developed two novel techniques, which are preparation of same level of temperature and pressure ambient as inside cylinder and quantitative measurement of vapor concentration. The first one utilizes combustion-type constant-volume chamber (inner volume 110cc), which allows 5 MPa and 873K by igniting the pre-mixture (n-pentane and air) with two spark plugs. In the second technique, TMPD vapor concentration is measured by using Laser Induced Exciplex Fluorescence method (LIEF). The concentration is compensated by investigation of the influence of ambient pressure (from 3 to 5 MPa) and temperature (from 550 to 900 K) on TMPD fluorescence intensity. By using two techniques, we investigated the influence of nozzle hole diameter, injection pressure and ambient condition on spray characteristics.
Technical Paper

Measurement of Temperature Distribution Nearby Flame Quenching Zone by Real-Time Holographic Interferometry

2004-03-08
2004-01-1761
Temperature distribution as the flame propagated and contacted to the wall of the combustion chamber was measured by real-time holographic interference method, which mainly consisted of an argon-ion laser and a high-speed video camera. The experiment was done with a constant volume chamber and propane-air mixture with several kinds of equivalence ratios. From the experimental results, it can be found that the temperature distribution outside the zone from the surface of the combustion chamber to 0.1mm distance could be measured by counting the number of the interference fringes, but couldn't within this zone because of lacking in the resolution of the used optical system. The experimental results show that the temperature distribution when the heat flux on the wall increases rapidly and when the heat flux shows the maximum value are quite different by the equivalence ratio.
Technical Paper

A Light Scattering and Holographic Technique for Determining Droplet Size and Volume Density Distribution in Diesel Fuel Sprays

1982-02-01
820355
In a diesel engine, the mixing of the fuel spray and in-cylinder air controls rate of beat release during combustion, namely it will determine the thermal efficiency, maximum output and gas or noise emission, etc. Therefore, it is important to measure the droplet size and its volume density distribution in diesel fuel sprays. The optical measuring method, which includes a light scattering and holographic technique, seems the only feasible method for analysing these unsteady characteristics of fuel sprays. The light scattering technique described herein was based upon Mie scattering theory, and the droplet size and volume density distribution of fuel sprays were calculated from the combination of the light extinction and the forward-to-backscattering ratio of Mie scattering intensity. The volume density and droplet size distribution of fuel sprays were obtained from the light intensity distribution on a photograph of fuel sprays.
Technical Paper

Development of a Higher Boost Turbocharged Diesel Engine for Better Fuel Economy in Heavy Vehicles

1983-02-01
830379
This paper presents technical solutions and a development process to accomplish not only superior fuel economy but also excellent driveability with a turbocharged diesel engine for heavy duty trucks. For better fuel economy, one of the basic considerations is how to decrease the friction losses of the engine itself while keeping the required horsepower and torque characteristics. A high boost turbocharged small engine offers this possibility, but it has serious disadvantages such as inferior low speed torque, poorer accelerating response, insufficient engine braking performance, and finally not always so good fuel consumption in the engine operating range away from the matching point between engine and turbocharger. These are not acceptable in complicated traffic conditions like those in Japan - a mixture of mountainous and hilly roads, city road with numerous traffic signals, and freeways.
Technical Paper

Development of Hino Turbocharged Diesel Engines

1984-02-01
840015
A historical review of Japanese turbocharged diesel engines for heavy duty vehicles is described, and newly developed turbocharged diesel engines of HINO are introduced. The design features of these engines include new turbocharging technologies such as highly backward curved impeller for compressor blade, variable controlled inertia charging and waste gate. Laboratory and field test results demonstrated better fuel economy and improved low speed and transient torque characteristics than the predecessors. Several operational experiences, technical analysis and reliability problems are discussed.
Technical Paper

A New Combustion System for the Diesel Engine and Its Analysis via High Speed Photography

1977-02-01
770674
Described herein is the tuning of the combustion system of a direct injection type diesel engine to obtain low emission level and better fuel economy. Though the most important method of emission control for a direct injection system is considered to be timing retardation, it brings a higher level of smoke density and fuel consumption. In order to remove these faults, the authors developed a new combustion system based on a newly designed intake port which provides a favorable local mixing of fuel droplets and air in the combustion chamber for ignition by means of air turbulence. This new combustion system was analyzed with high speed photographs which were taken from the underside of the piston to enable observing the whole combustion chamber. Favorable characteristics of ignition and burning pattern of the new system were recognized by this analysis.
Technical Paper

A Modification of Combustion Systems for Low Exhaust Emission and Its Effects on Durability of Prechamber Diesel Engine

1976-02-01
760213
Described here is the tuning of the combustion systems of a precombustion chamber diesel engine for lower level of exhaust gas emission. The key points of the tuning are the decrease of the prechamber volume, the selection of the combustion chamber configuration, the injection nozzle characteristics and the optimum injection timing. It was made clear, in the results of investigation, that the degradation of lubricating oil and the cavitation pitting on the outer wall of cylinder liner were directly concerned with the combustion characteristics of low emission systems. And both problems have been solved. The result of combustion tuning of the engine shows less than 5 g/hp-h of NOx + HC with CARB 13 mode test cycle without deterioration of performance nor durability.
Technical Paper

An Observation of Combustion Phenomenon on Heat Insulated Turbo-Charged and Inter-Cooled D.I. Diesel Engines

1986-09-01
861187
A current unmodified and modified engines with different amounts of thermal insulation have been used to generate data from which changes in bsfc, cooling loss, emissions, exhaust loss were determined. Since legislative requirement exists for allowable emission of NOx, fuel injection timing and other controllable factors were adjusted to maintain constant NOx emission except a test of influence on NOx emission according to the rate of heat insulation (adiabaticity). The effect of higher combustion temperature on the combustion phenomena is discussed.
Technical Paper

Low Emission Combustion influences Durability of Fuel Injection Pipe Line and Treatment of the Pipe

1987-09-01
871614
In order to reduce particulate and NOx emission from the direct injection diesel engine, most researchers have been expecting the utilization of higher injection pressure and injection rate for improvement of diesel combustion. In the case of pump-line-nozzle system, the injection pipe line is very important with regard to the high injection pressure. Namely, the pipe line must be able to resist not only high pressure but also cavitation erosion. In this paper, the effect of high injection pressure, injection rate and sharp cutting at the end of fuel injection are discussed along with cavitation phenomena on the injection pipe line. And durability tests on the pipe line system under high injection pressure using a test rig are also described. Regarding durability tests, several measures have been taken for the injection pipe. As a result, the authors have found that the best solution for the injection pipe is a composite pipe made with SUS and steel.
Technical Paper

Heat Transfer in the Internal Combustion Engines

2000-03-06
2000-01-0300
This investigation was concerned with the rate of heat transfer from the working gases to the combustion chamber walls of the internal combustion engines. The numerical formula for estimating the heat transfer to the combustion chamber wall was derived from the theoretical analysis and the experiment, which were used the constant volume combustion chamber and the actual gasoline engine. As a result, mean heat transfer in the internal combustion engine becomes possible to estimate with measuring the cylinder pressure. In addition, the derived numerical formula forms with quite simple variables. Therefore it is very useful for engine design.
Technical Paper

The Engine: a Perspective on Human Life and Environments

2000-06-03
2000-05-0010
In the 17th century, Christiaan Huygens invented the first engine to save the labor, which is humanism. Nowadays, both gasoline (SI) and diesel (CI) engines hold the definite position as the prime mover of the current surface transport vehicles due to their superior power, energy density, and fuel economy. Although these engines give exceeding convenience to human life, they also have become the vanguard of environmental disruption. From this viewpoint, the author has tried to give a historical review and perspective on engine developments. Although it is said that further emission controls in CI engines are quite difficult, recent research work and prediction for both lower emissions and better fuel economy are discussed. It is concluded that CI engines will co-exist with SI engines in the future, part of which will be used in hybrid systems. Fuel cells will be widely utilized, and hydrogen internal combustion engines would be expected as well.
Technical Paper

The Method of Measuring Air-Fuel Ratio by Radical Luminescence in High Combustion Pressure

1999-03-01
1999-01-0507
The relations of luminous intensity of the radicals, CH, C2, and OH radical, and the equivalence ratio, ϕ under high combustion pressure region (7.0MPa maximum) were investigated. Luminous intensity of each radical and combustion pressure were experimentally obtained using a constant volume combustion chamber. It was found that luminous intensity of each radical can be expressed as a function of ϕ and the combustion pressure. The estimation of ϕ was done within the region, 0.8<ϕ<1.2 and 2.0MPa
Technical Paper

Implementation of Air-Fuel Ratio Feed-Forward Controller Considering Heat Transfer at Intake System to SI Engine

2015-09-01
2015-01-1982
For further development of the thermal efficiency of SI engines, the robust control of the air-fuel ratio (A/F) fluctuation is one of the most important technologies, because the A/F is maintained at the theoretical constant value, which causes the increase of the catalytic conversion efficiency and the reduction of pollutant emission. We developed the robust controller of the A/F, which is the method to change the fuel injection rate by using the feed-forward (FF) controller considering the heat transfer at the intake system. The FF controller was verified under transient driving conditions for a single cylinder, and the A/F fluctuations were reduced at approximately 84%.
Technical Paper

An Improvement of a Small Displacement Engine's Efficiency with a Super Charging System

2011-11-08
2011-32-0571
1 Many environmental problems, such as global warming, drain of fuel and so on, are apprehended in all over the world today, and down-sizing is one of the wise ways to deal with these problems. It is significant that a decrease of the engine power must not be produced by using a small displacement engine, so more efficient engine system should be designed to increase the torque with a little fuel. This study achieves an improvement of efficiency for mounting the super charging system on the small displacement engine. As a result, comparing a super charged engine and a naturally aspirated one to drive the same course and laps, fuel consumptions are 2547 [cc] and 3880 [cc], respectively, and an improvement of fuel consumption is 52%. Designing points to mount super charging system is introduced below. 1 It can be forecasted that intake air blow-by gas at the combustion chamber is increased in low engine speed because engine for motor cycle is used.
Technical Paper

Improving the Fuel Economy of Supercharged Engine

2013-10-15
2013-32-9118
The paper reviews the experimental development of fuel economy of engine powering the 2012 Formula SAE single seat race car of the University of Sophia. The balance of high power and low fuel consumption is biggest challenge of racing engine. It was found that improving the efficiency of engine by supercharging as a way to achieve that. In order to adapt the supercharger for the engine, the important design points are below: It was found that intake air blow-by gas at combustion chamber is increased in low engine speed. To improve that, the valve overlap angle was changed to adopt supercharged engine and improve effective compression ratio. Typically the racing engine demands maximum torque for performance but that does not imply that the air fuel ratio should be rich than theoretical. The point is the maximum torque of the engine is proportional to the amount of air intake. Therefore, supercharged engine is possible to increase the supercharging pressure for bigger torque.
Technical Paper

Evaluation of On-board Heat Loss Prediction Model and Polytropic Index Prediction Model for CI Engines Using Measurements of Combustion Chamber Wall Heat Flux

2020-01-24
2019-32-0543
Diesel engines need to optimize the fuel injection timing and quantity of each cycle in the transient operation to increase the thermal efficiency and reduce the exhaust gas emissions through the precise combustion control. The heat transfer from the working gas in the combustion chamber to the chamber wall is a crucial factor to predict the gas temperature in the combustion chamber to optimize the timing and quantity of fuel injection. Therefore, the authors developed both the heat loss and the polytropic index prediction models with the low calculation load and high accuracy. In addition, for the calculation of the heat loss and the polytropic index, the wall heat transfer model was also developed, which was derived from the continuity equation and the energy equation. The present study used a single cylinder diesel engine under the condition of engine speed of 1200 and 1500 rpm, and measured the local wall temperature and the local heat flux of the combustion chamber.
Journal Article

Research on Ultra-High Viscosity Index Engine Oil: Part 1 - “Flat Viscosity” Concept and Contribution to Carbon Neutrality

2022-03-29
2022-01-0525
In recent years, the realization of carbon neutrality has become an activity to be tackled worldwide, and automobile manufacturers are promoting electrification of power train by HEV, PHEV, BEV and FCEV. Although interest in BEV is currently growing, vehicles equipped with internal combustion engines (ICE) including HEV and PHEV will continue to be used in areas where conversion to BEV is not easy due to lack of sufficient infrastructures. For such vehicles, low-viscosity engine oil will be one of the most important means to contribute to further reduction of CO2 emissions. Since HEV requires less work from the engine, the engine oil temperature is lower than that of conventional engine vehicles. Therefore, the reduction of viscous resistance in the mid-to-low temperature range below 80°C is expected to contribute more to fuel economy. On the other hand, the viscosity must be kept above a certain level to ensure the performance of hydraulic devices in the high oil temperature range.
X