Refine Your Search

Search Results

Viewing 1 to 7 of 7
Journal Article

Development of a Fast-Acting, Time-Resolved Gas Sampling System for Combustion and Fuels Analysis

2016-04-05
2016-01-0791
Development of new fuels and engine combustion strategies for future ultra-low emission engines requires a greater level of insight into the process of emissions formation than is afforded by the approach of engine exhaust measurement. The paper describes the development of an in-cylinder gas sampling system consisting of a fast-acting, percussion-based, poppet-type sampling valve, and a heated dilution tunnel; and the deployment of the system in a single cylinder engine. A control system was also developed for the sampling valve to allow gas samples to be extracted from the engine cylinder during combustion, at any desired crank angle in the engine cycle, while the valve motion was continuously monitored using a proximity sensor. The gas sampling system was utilised on a direct injection diesel engine co-combusting a range of hydrogen-diesel fuel and methane-diesel fuel mixtures.
Technical Paper

Comparison between Unthrottled, Single and Two-valve Induction Strategies Utilising Direct Gasoline Injection: Emissions, Heat-release and Fuel Consumption Analysis

2008-06-23
2008-01-1626
For a spark-ignition engine, the parasitic loss suffered as a result of conventional throttling has long been recognised as a major reason for poor part-load fuel efficiency. While lean, stratified charge, operation addresses this issue, exhaust gas aftertreatment is more challenging compared with homogeneous operation and three-way catalyst after-treatment. This paper adopts a different approach: homogeneous charge direct injection (DI) operation with variable valve actuations which reduce throttling losses. In particular, low-lift and early inlet valve closing (EIVC) strategies are investigated. Results from a thermodynamic single cylinder engine are presented that quantify the effect of two low-lift camshafts and one standard high-lift camshaft operating EIVC strategies at four engine running conditions; both, two- and single-inlet valve operation were investigated. Tests were conducted for both port and DI fuelling, under stoichiometric conditions.
Technical Paper

Analysis of Tumble and Swirl Motions in a Four-Valve SI Engine

2001-09-24
2001-01-3555
Tumble and swirl motions in the cylinder of a four-valve SI engine with production type cylinder head were investigated using a cross-correlation digital Particle Image Velocimetry (PIV). Tumble motion was measured on the vertical symmetric plane of the combustion chamber. Swirl motion was measured on a plane parallel to the piston crown with one of intake ports blocked. Large-scale flow behaviours and their cyclic variations were analysed from the measured two-dimensional velocity data. Results show that swirl motion is generated at the end of the intake stroke and persists to the end of the compression stroke. Tumble vortex is produced in the early stage of the compression stroke and distorted in the late stage of the stroke. The cyclic variation of swirl motion is noticeable. The cyclic variation in tumble dominated flow field is much greater.
Technical Paper

Analysis of Swirl in Unsteady Flow and its Effect on Diesel Combustion

1992-09-01
921643
The paper first describes three linked computational models which allow the estimation of: swirl generated during the induction process; the modification of swirl with bowl-in-piston combustion chambers during compression as the piston approaches top dead centre; the interaction of the fuel sprays with swirl including relative crosswind velocities between the air and the fuel sprays and spray impingement velocities. The paper then presents experimental results from a single-cylinder direct injection diesel engine, during which both the fuel spray and swirl parameters were changed systematically. Finally, the predicted spray impingement and crosswind velocities for this engine are correlated with the engine performance obtained experimentally, in particular, with fuel economy and smoke emission.
Technical Paper

A Guide to Measurement of Flame Temperature and Soot Concentration in Diesel Engines Using the Two-Colour Method Part 2: Implementation

1994-10-01
941957
The measurement of the instantaneous flame temperature and soot concentration in the combustion chamber of a running diesel engine can provide useful information relating to the formation of two important exhaust pollutants, NOx and particulates. The two-colour method is based on optical pyrometry and it can provide estimates of the instantaneous flame temperature and soot concentration. The theoretical basis of the method is outlined in a companion paper. This paper deals with the practical problems involved in the construction of a working system, including suitable calibration techniques. The accuracy of the measurements of flame temperature and soot concentration is also discussed using results from a various sources.
Technical Paper

In-Cylinder Catalysts - A Novel Approach to Reduce Hydrocarbon Emissions from Spark-Ignition Engines

1995-10-01
952419
A novel approach was proposed and investigated to reduce unburned hydrocarbon emissions from spark-ignition engines using in-cylinder catalysts. The unburned hydrocarbons in spark-ignition engines arise primarily from sources near the combustion chamber walls, such as flame quenching at the entrance of crevice volumes and at the combustion chamber wall, and the absorption and desorption of fuel vapour into oil layers on the cylinder wall. The proximity of these sources of unburned hydrocarbons to the wall means that they can be reduced significantly by simply using in-cylinder catalysts on the combustion chamber walls, in particular on the surfaces of the crevice volumes. A platinum-rhodium coating was deposited on the top and side surfaces of the piston crown, and its effects on the engine combustion and emission characteristics were examined in this experimental investigation.
Technical Paper

Engine Testing of Dissolved Sodium Borohydride for Diesel Combustion CO2 Scrubbing

2014-10-13
2014-01-2729
Improvements in the efficiency of internal combustion engines and the development of renewable liquid fuels have both been deployed to reduce exhaust emissions of CO2. An additional approach is to scrub CO2 from the combustion gases, and one potential means by which this might be achieved is the reaction of combustions gases with sodium borohydride to form sodium carbonate. This paper presents experimental studies carried out on a modern direct injection diesel engine supplied with a solution of dissolved sodium borohydride so as to investigate the effects of sodium borohydride on combustion and emissions. Sodium borohydride was dissolved in the ether diglyme at concentrations of 0.1 and 2 % (wt/wt), and tested alongside pure diglyme and a reference fossil diesel. The sodium borohydride solutions and pure diglyme were supplied to the fuel injector under an inert atmosphere and tested at a constant injection timing and constant engine indicated mean effective pressure (IMEP).
X