Refine Your Search

Topic

Search Results

Technical Paper

Numerical Study on Wall Impingement and Film Formation in Direct-Injection Spark-Ignition Condition

2020-04-14
2020-01-1160
Since the amount of emitted CO2 is directly related to car fuel economy, attention is being drawn to DISI (Direct-Injection Spark-Ignition) engines, which have better fuel economy than conventional gasoline engines. However, it has been a problem that the rich air-fuel mixtures associated with fuel films during cold starts due to spray impingement produce particulate matter (PM). In predicting soot formation, it is important to predict the mixture field precisely. Thus, accurate spray and film models are a prerequisite of the soot model. The previous models were well matched with low-speed collision conditions, such as those of diesel engines, which have a relatively high ambient pressure and long traveling distances. Droplets colliding at low velocities have an order of magnitude of kinetic energy similar to that of the sum of the surface tension energy and the critical energy at which the splash occurs.
Technical Paper

An Experimental Investigation of In-Cylinder Flow Motion Effect on Dual-Fuel Premixed Compression Ignition Characteristics

2020-04-14
2020-01-0306
The combustion process using two fuels with different reactivity, known as dual-fuel combustion or RCCI is mainly studied to reduce emissions while maintaining thermal efficiency compared to the conventional diesel combustion. Many studies have proven that dual-fuel combustion has a positive prospect in future combustion to achieve ultra-low engine-out emissions with high indicated thermal efficiency. However, a limitation on high-load expansion due to the higher maximum in-cylinder pressure rise rate (mPRR) is a main problem. Thus, it is important to establish the operating strategy and study the effect of in-cylinder flow motion with dual-fuel combustion to achieve a low mPRR and emissions while maintaining high-efficiency. In this research, the characteristics of gasoline-diesel dual-fuel combustion on different hardware were studied to verify the effect of the in-cylinder flow motion on dual-fuel combustion.
Journal Article

The Measurement of Penetration Length of Diesel Spray by Using Background Oriented Schlieren Technique

2011-04-12
2011-01-0684
The measurement of spray penetration length is one of crucial tasks for understanding the characteristics of diesel spray and combustion. For this reason, many researchers have devised various measurement techniques, including Mie scattering, schlieren photography, and laser induced exciplex fluorescence (LIEF). However, the requirements of expensive lasers, complicated optics, delicate setups, and tracers that affect fuel characteristics have been disadvantages of previous techniques. In this study, the background-oriented schlieren (BOS) technique is employed to measure the vapor penetration length of diesel spray for the first time. The BOS technique has a number of benefits over the previous techniques because of its quantitative, non-intrusive nature which does not require lasers, mirrors, optical filters, or fuel tracers.
Technical Paper

Modeling of Combustion Process of Multiple Injection in HSDI Diesel Engines using Modified Two-Dimensional Flamelet

2007-09-16
2007-24-0042
Ignition delay of the second injection of HSDI diesel engines is generally much shorter than that of the first injection because of the interaction between the radicals generated during the combustion process and the mixed gas of the second injection. Although previous Diesel combustion models could not explain this reaction, Hasse and Peters described the mass and heat transfer of the second injection and estimated the ignition delay of the second injection using two-dimensional flamelet equations. But a simulation of the two-dimensional flamelet equations requires enormous computational time. Thus, to analyze the combustion phenomena of the multiple injection mode in HSDI diesel engines effectively, the two-dimensional flamelet combustion model was modified in this study. To reduce the calculation time, two-dimensional flamelet equations were only applied near the stoichiometric region.
Technical Paper

Development of a Reduced Chemical Kinetic Mechanism and Ignition Delay Measurement in a Rapid Compression Machine for CAI Combustion

2007-04-16
2007-01-0218
A reduced chemical kinetic mechanism for a gasoline surrogate was developed and validated in this study for CAI (Controlled Auto Ignition) combustion. The gasoline surrogate was modeled as a blend of iso-octane, n-heptane, and toluene. This reduced mechanism consisted of 44 species and 59 reactions, including main reaction paths of iso-octane, n-heptane, and toluene. The ignition delay times calculated from this mechanism showed a good agreement with previous experimental data from shock tube measurement. A rapid compression machine (RCM) was developed and used to measure the ignition delay times of gasoline and surrogate fuels in the temperature range of 890K ∼ 1000K. The RCM experimental results were also compared with the RCM simulation using the reduced mechanism. It was found that the chemical reaction started before the end of the compression process in the RCM experiment. And the ignition delay time of the suggested gasoline surrogate was similar to that of gasoline.
Technical Paper

An On-Line Model for Predicting Residual Gas Fraction by Measuring Intake/Exhaust and Cylinder Pressure in CAI Engine

2008-04-14
2008-01-0540
CAI (Controlled Auto Ignition) combustion is already well known to be advantageous over conventional cycles in that it facilitates higher engine efficiency and has low emission characteristics. The CAI combustion process is mainly governed by in-cylinder RGF (Residual Gas Fraction), therefore achieving good control of in-cylinder RGF is essential in the development of CAI combustion engine. Usually, in-cylinder RGF controlled via low lift cam, short valve duration and negative valve overlap. More importantly on the other hand, accurate and instantaneous prediction of RGF must be done as a prerequisite to control. However, on-line prediction of RGF is not always practical due to the requirement of expensive fast response exhaust gas analyzers in the empirical case or otherwise due to theoretical models which are just too slow for application by means of simulation solving. In this paper, a newly enhanced theoretical model for predicting on-line in-cylinder RGF is introduced.
Technical Paper

Laminar Flame Speed Characteristics and Combustion Simulation of Synthetic Gas Fueled SI Engine

2008-04-14
2008-01-0965
As the real-time supplying of hydrogen-rich gas becomes possible by the advances in the on-board fuel reforming technologies, utilizations of synthetic gas in IC engines are actively studied. However, due to the lack of fundamental studies on the combustion characteristics of synthetic gas, there is no precedent for the simulation of combustion process in synthetic gas fueled SI engine. In this study, the laminar flame speeds of synthetic gas and its mixture with iso-octane were calculated under extensive initial conditions of 3,575 points derived by combinations of temperature, pressure, fraction of lower heating value of synthetic gas and air-excess ratio variations.
Technical Paper

Study of a Stratification Effect on Engine Performance in Gasoline HCCI Combustion by Using the Multi-zone Method and Reduced Kinetic Mechanism

2009-06-15
2009-01-1784
A gasoline homogeneous charged compression ignition (HCCI) called the controlled auto ignition (CAI) engine is an alternative to conventional gasoline engines with higher efficiency and lower emission levels. However, noise and vibration are currently major problems in the CAI engine. The problems result from fast burning speeds during combustion, because in the CAI engine combustion is controlled by auto-ignition rather than the flame. Thus, the ignition delay of the local mixture has to vary according to the location in the combustion chamber to avoid noise and vibration. For making different ignition delays, stratification of temperature or mixing ratio was tested in this study. In charge stratification, which determines the difference between the start of combustion among charges with different properties, two kinds of mixtures with different properties flow into two intake ports.
Technical Paper

Analysis of Cyclic Variation and the Effect of Fuel Stratification on Combustion Stabilityin a Port Fuel Injection (PFI) CAI Engine

2009-04-20
2009-01-0670
CAI engine is well known to be advantageous over conventional SI engines because it facilitates higher engine efficiency and lower emission (NOx and smoke). However, its limited operation range, large cyclic variation, and difficulty in heat release control are still unresolved obstacles. Previous studies showed that a high load range of the CAI engine is limited mainly by the combustion noise caused by a stiff pressure rise (knock), and that a low load range is also limited by the combustion instability caused by the high dilution of residual gas. In this study, the characteristics of each cycle were analyzed to find the cause of the cycle variation at the high load limit of CAI operation. Moreover, to improve combustion stability, we tested the in-cylinder fuel stratification by applying nonsymmetrical fuel injection to the intake port. Experiments were performed on a PFI single cylinder research engine equipped with dual CVVT and low lift (2 mm) cam shaft with NVO strategy.
Technical Paper

Reducing Exhaust HC Emission at SI Engine Using Continuous and Synchronized Secondary Air Injection

2000-06-12
2000-05-0296
The effect of secondary air injection (SAI) on exhaust hydrocarbon (HC) emission has been investigated in a spark-ignition (SI) single cylinder engine operating at steady-state cold condition. Both continuous SAI and synchronized SAI, which corresponds to intermittent secondary air injection to exhaust port, are tested. Oxidation characteristics of HC are monitored with a FID analyzer and exhaust gas temperatures with thermocouples. Effects of exhaust air-fuel ratio (A/F), location of SAI, and engine-A/F have been investigated. Results show that HC reduction rate increases as the location of SAI is closer to the exhaust valve for both synchronized and continuous SAIs. HC emission decreases with increasing exhaust-A/F when exhaust-A/F is rich, and is relatively insensitive when exhaust-A/F is lean. In synchronized SAI, SAI timing has significant effect on HC reduction and exhaust gas temperature. Optimum SAI timing observed is ATDC 100° and 230°.
Technical Paper

Measurements and Modeling of Residual Gas Fraction in SI Engines

2001-05-07
2001-01-1910
The residual gas in SI engines is one of important factors on emission and performance such as combustion stability. With high residual gas fractions, flame speed and maximum combustion temperature are decreased and there are deeply related with combustion stability, especially at Idle and NOx emission at relatively high engine load. Therefore, there is a need to characterize the residual gas fraction as a function of the engine operating parameters. A model for predicting the residual gas fraction has been formulated in this paper. The model accounts for the contribution due to the back flow of exhaust gas to the cylinder during valve overlap and it includes in-cylinder pressure prediction model during valve overlap. The model is derived from the one dimension flow process during overlap period and a simple ideal cycle model.
Technical Paper

Enhancing Performance and Combustion of an LPG MPI Engine for Heavy Duty Vehicles

2002-03-04
2002-01-0449
An LPG engine for heavy duty vehicles has been developed using liquid phase LPG injection (hereafter LPLI) system, which has regarded as as one of next generation LPG fuel supply systems. In this work the optimized piston cavities were investigated and chosen for an LPLI engine system. While the mass production of piston cavities is considered, three piston cavities were tested: Dog-dish type, bathtub type and top-land-cut bathtub type. From the experiments the bathtub type showed the extension of lean limit while achieving the stable combustion, compared to the dog-dish type at the same injection timing. Throughout CFD analysis, it was revealed that the extension of lean limit was due to an increase of turbulence intensity by the enlarged crevice area, and the enlargement of flame front surface owing to the shape of the bathtub piston cavity compared to that of the dog-dish type.
Technical Paper

Reduced Chemical Kinetic Model of DME for HCCI Combustion

2003-05-19
2003-01-1822
Homogeneous Charge Compression Ignition combustion engines could have a thermal efficiency as high as that of conventional compression-ignition engines and the production of low emissions of ultra-low oxides of NOx and PM. HCCI engines can operate on most alternative fuels, especially, dimethyl ether which has been tested as possible diesel fuel for its simultaneously reduced NOx and PM emissions. However, to adjust HCCI combustion to practical engines, the main problem about the HCCI engine must be solved; control of its ignition timing and burn rate over a range of engine speeds and loads. Detailed chemical kinetic modeling has been used to predict the combustion characteristics. But it is difficult to apply detailed chemical kinetic mechanism to simulate practical engines because of its high complexity coupled with multidimensional fluid dynamic models. Thus, reduced chemical kinetic modeling is desirable.
Technical Paper

A Study on the Refinement of Turbulence Intensity Prediction for the Estimation of In-Cylinder Pressure in a Spark-Ignited Engine

2017-03-28
2017-01-0525
The role of 1D simulation tool is growing as the engine system is becoming more complex with the adoption of a variety of new technologies. For the reliability of the 1D simulation results, it is necessary to improve the accuracy and applicability of the combustion model implemented in the 1D simulation tool. Since the combustion process in SI engine is mainly determined by the turbulence, many models have been concentrating on the prediction of the evolution of in-cylinder turbulence intensity. In this study, two turbulence models which can resemble the turbulence intensity close to that of 3D CFD tool were utilized. The first model is dedicated to predicting the evolution of turbulence intensity during intake and compression strokes so that the turbulence intensity at the spark timing can be estimated properly. The second model is responsible for predicting the turbulence intensity of burned and unburned zone during the combustion process.
Technical Paper

Study of LES Quality Criteria in a Motored Internal Combustion Engine

2017-03-28
2017-01-0549
In recent years, Large-Eddy Simulation (LES) is spotlighted as an engineering tool and severe research efforts are carried out on its applicability to Internal Combustion Engines (ICEs). However, there is a general lack of definitive conclusions on LES quality criteria for ICE. This paper focuses on the application of LES quality criteria to ICE and to their correlation, in order to draw a solid background on future LES quality assessments for ICE. In this paper, TCC-III single-cylinder optical engine from University of Michigan is investigated and the analysis is conducted under motored condition. LES quality is mainly affected by grid size and type, sub-grid scale (SGS) model, numeric schemes. In this study, the same grid size and type are used in order to focus on the effect on LES quality of SGS models and blending factors of numeric scheme only.
Technical Paper

Closed-Loop Control Method for Monitoring and Improving the Diesel Combustion Noise

2016-06-15
2016-01-1770
This paper presents two closed-loop control methods for monitoring and improving the combustion behavior and the combustion noise on two 4-cylinder diesel engines, in which an in-cylinder pressure and an accelerometer transducer are used to monitor and control them. Combustion processes are developed to satisfy the stricter and stricter regulations on emissions and fuel consumption. These combustion processes are influenced by the factors such as engine durability, driving conditions, environmental influences and fuel properties. Combustion noise could be increased by these factors and is detrimental to interior sound quality. Therefore, it is necessary to develop robust combustion behaviors and combustion noise. For this situation, we have developed two closed-loop control methods. Firstly, a method using in-cylinder pressure data was developed for monitoring and improving the combustion noise of a 1.7L engine. A new index using the values calculated from the data was proposed.
Technical Paper

Investigation of Sub-Grid Model Effect on the Accuracy of In-Cylinder LES of the TCC Engine under Motored Conditions

2017-09-04
2017-24-0040
The increasing interest in the application of Large Eddy Simulation (LES) to Internal Combustion Engines (hereafter ICEs) flows is motivated by its capability to capture spatial and temporal evolution of turbulent flow structures. Furthermore, LES is universally recognized as capable of simulating highly unsteady and random phenomena driving cycle-to-cycle variability (CCV) and cycle-resolved events such as knock and misfire. Several quality criteria were proposed in the recent past to estimate LES uncertainty: however, definitive conclusions on LES quality criteria for ICEs are still far to be found. This paper describes the application of LES quality criteria to the TCC-III single-cylinder optical engine from University of Michigan and GM Global R&D; the analyses are carried out under motored condition.
Technical Paper

Numerical Investigation of Soot Emission in Direct-Injection Spark-Ignition Engines Using a Detailed Soot Model Framework

2016-04-05
2016-01-0580
The soot emission in direct-injection spark-ignition engines under various operating conditions was numerically investigated in the present study. A detailed soot model was used to resolve the physical soot process that consists of polycyclic aromatics hydrocarbon (PAH) formation and soot particle dynamics. The primary propagating flame in partially-premixed field was described by G-equation model, and the concentrations of burned species as well as PAH behind of the flame front were determined from the laminar flamelet library that incorporates the PAH chemical mechanism. The particle dynamics in post-flame region include nucleation, surface growth, coagulation, and oxidation were modeled by method of moments. To improve the model predictability, a gasoline surrogate model was proposed to match the real fuel properties, and the input of droplet size distribution of fuel spray was obtained from Phase-Doppler Particle Analyzer.
Technical Paper

Development of Engine Control Using the In-Cylinder Pressure Signal in a High Speed Direct Injection Diesel Engine

2011-04-12
2011-01-1418
Emissions regulations are becoming more severe, and they remain a principal issue for vehicle manufacturers. Many engine subsystems and control technologies have been introduced to meet the demands of these regulations. For diesel engines, combustion control is one of the most effective approaches to reducing not only engine exhaust emissions but also cylinder-by-cylinder variation. However, the high cost of the pressure sensor and the complex engine head design for the extra equipment are stressful for the manufacturers. In this paper, a cylinder-pressure-based engine control logic is introduced for a multi-cylinder high speed direct injection (HSDI) diesel engine. The time for 50% of the mass fraction to burn (MFB50) and the IMEP are valuable for identifying combustion status. These two in-cylinder quantities are measured and applied to the engine control logic.
Technical Paper

Study on the Effect of Injection Strategies on Particulate Emission Characteristics under Cold Start Using In-cylinder Visualization

2016-04-05
2016-01-0822
Due to the direct injection of fuel into a combustion chamber, particulate emission is a challenge in DISI engines. Specifically, a significant amount of particulate emission is produced under the cold start condition. In this research, the main interest was to investigate particulate emission characteristics under the catalyst heating condition because it is one of the significant particulate-emissionproducing stages under the cold start condition. A single-cylinder optically accessible engine was used to investigate the effect of injection strategies on particulate emission characteristics under the catalyst heating condition. The split injection strategy was applied during intake stroke with various injection pressures and injection timings. Using luminosity analysis of the soot radiation during combustion, the particulate formation characteristics of each injection strategy were studied. Moreover, the factors that affect PM formation were analyzed via fuel injection visualization.
X