Refine Your Search

Search Results

Viewing 1 to 5 of 5
Journal Article

Dynamic Response of Vehicle Roof Structure and ATD Neck Loading During Dolly Rollover Tests

2010-04-12
2010-01-0515
The debate surrounding roof deformation and occupant injury potential has existed in the automotive community for over 30 years. In analysis of real-world rollovers, assessment of roof deformation and occupant compartment space starts with the post-accident roof position. Dynamic movement of the roof structure during a rollover sequence is generally acknowledged but quantification of the dynamic roof displacement has been limited. Previous assessment of dynamic roof deformation has been generally limited to review of the video footage from staged rollover events. Rollover testing for the evaluation of injury potential has typically been studied utilizing instrumented test dummies, on-board and off-board cameras, and measurements of residual crush. This study introduces an analysis of previously undocumented real-time data to be considered in the evaluation of the roof structure's dynamic behavior during a rollover event.
Journal Article

Passenger Vehicle Dynamic Response and Characterization of Side Structure during Low- to Moderate-Speed Side Impacts

2019-04-02
2019-01-0420
A significant portion of real-world passenger vehicle side impacts occur at lower speeds than testing conducted by the National Highway Traffic Safety Administration (NHTSA) or the Insurance Institute for Highway Safety (IIHS). Test data from low- to moderate-speed side impacts involving late-model passenger vehicles is limited, making the evaluation of vehicle impact response, occupant loading, and injury potential challenging. This study provides the results of low- to moderate-speed impact testing involving a late-model mid-size sedan. Two full-scale Non-Deformable Moving Barrier (NDMB) side impact crash tests were conducted at speeds of 6.2 mph (10.0 kph) and 13.4 mph (21.6 kph). Instrumentation on the late-model sedan used for the test series included tri-axis accelerometers and seat belt load cells.
Technical Paper

Steering Maneuver with Furrow-Tripped Rollovers of a Pickup and Passenger Car

2015-04-14
2015-01-1477
Extensive testing has been conducted to evaluate both the dynamic response of vehicle structures and occupant protection systems in rollover collisions though the use of Anthropomorphic Test Devices (ATDs). Rollover test methods that utilize a fixture to initiate the rollover event include the SAE2114 dolly, inverted drop tests, accelerating vehicle body buck on a decelerating sled, ramp-induced rollovers, and Controlled Rollover Impact System (CRIS) Tests. More recently, programmable steering controllers have been used with sedans, vans, pickup trucks, and SUVs to induce a rollover, primarily for studying the vehicle kinematics for accident reconstruction applications. The goal of this study was to create a prototypical rollover crash test for the study of vehicle dynamics and occupant injury risk where the rollover is initiated by a steering input over realistic terrain without the constraints of previously used test methods.
Technical Paper

Passenger Vehicle Occupant Response to Low-Speed Impacts with a Tractor-Semitrailer

2011-04-12
2011-01-1125
Low-speed sideswipe collisions between tractor-semitrailers and passenger vehicles may result in large areas of visible damage to the passenger vehicle. However, due to the extended contact that occurs during these impacts, it is typical in these incidents for the crash pulse duration to be long and the vehicle accelerations to be correspondingly low. Research regarding the impact environment and resulting injury potential of the occupants during these types of impacts is limited. Five full-scale crash tests utilizing a tractor-semitrailer and a passenger car were conducted to explore the occupant responses during these types of collisions. The test vehicles included a van semitrailer pulled by a tractor and three identical mid-sized sedans. The occupants of the sedans included an instrumented Hybrid III 5th -percentile-male anthropomorphic test device (ATD) in the driver's seat and an un-instrumented Hybrid III 5th -percentile-female ATD in the left rear seat.
Technical Paper

Passenger Vehicle Response and Damage Characteristics of Front and Rear Structures during Low- to Moderate-Speed Impacts

2019-04-02
2019-01-0415
A significant number of vehicle-to-vehicle collisions involve front-to-rear impacts at low- to moderate-speeds. While a variety of studies have been conducted since the 1990s involving fore-aft collisions, those discussing the response of late model passenger vehicles during progressively more severe impacts are limited. In this study, four inline, front-rear tests were conducted using two midsize sedans of the same make, model, and year. An instrumented Hybrid III 50th percentile-male Anthropomorphic Test Device (ATD) was located in the driver seat of each sedan and was restrained using the standard three-point seat belt system. Instrumentation on the vehicles included tri-axis accelerometers and seat belt load cells. For each test, the centerlines of the vehicles were aligned, and the striking vehicle impacted the stationary target vehicle at closing speeds of 4.6, 7.9, 13.5, and 20.9 mph (7.4, 12.7, 21.7, and 33.6 kph).
X