Refine Your Search

Search Results

Viewing 1 to 6 of 6
Technical Paper

Application of Anthropomorphic Test Device Crash Test Kinetics to Post Mortem Human Subject Lower Extremity Testing

2006-04-03
2006-01-0251
The primary goal of the current study was to determine ATD lower extremity loading characteristics seen in frontal crash tests and apply these characteristics to isolated PMHS lower extremity impacts. Essentially, the study attempted to re-create the kinetics experienced by the Hybrid III 50th percentile ATD (HIII) in frontal crash tests and apply this crash test loading scenario directly to PMHS specimens efficiently and while maximizing the utilization of a small number of cadaver subjects. The secondary goal of this study was to determine the relationship between PMHS and HIII lower extremity impact response. Based on this comparison, it was anticipated that PMHS posterior cruciate ligament (PCL) injury threshold and timing could be related to knee shear in the HIII ball-bearing knee slider mechanism. HIII lower extremity loading was analyzed from a series of twenty-eight (28) frontal barrier or vehicle to vehicle crash tests from late model vehicles.
Technical Paper

Quantification of Skeletal and Soft Tissue Contributions to Thoracic Response in a Dynamic Frontal Loading Scenario

2018-11-12
2018-22-0005
Thoracic injuries continue to be a major health concern in motor vehicle crashes. Previous thoracic research has focused on 50th percentile males and utilized scaling techniques to apply results to different demographics. Individual rib testing offers the advantage of capturing demographic differences; however, understanding of rib properties in the context of the intact thorax is lacking. Therefore, the objective of this study was to obtain the data necessary to develop a transfer function between individual rib and thoracic response. A series of non-injurious frontal impacts were conducted on six PMHS, creating a loading environment commensurate to previously published individual rib testing. Each PMHS was tested in four tissue states: intact, intact with upper limbs removed, denuded, and eviscerated. Following eviscerated thoracic testing, eight individual mid-level ribs from each PMHS were removed and loaded to failure.
Technical Paper

Shoulder Injury and Response Due to Lateral Glenohumeral Joint Impact: An Analysis of Combined Data

2005-11-09
2005-22-0014
To date, several lateral impact studies (Bolte et al., 2000, 2003, Marth, 2002 and Compigne et al., 2004) have been performed on the shoulder to determine the response characteristics and injury threshold of the shoulder complex. Our understanding of the biomechanical response and injury tolerance of the shoulder would be improved if the results of these tests were combined. From a larger data base shoulder injury tolerance criteria can be developed as well as corridors for side impact dummies. Data from the study by Marth (2002, 12 tests) was combined with data from the previous studies. Twenty-two low speed tests (4.5 ± 0.7 m/s) and 9 high speed tests (6.7 ± 0.7 m/s) were selected from the combined data for developing corridors. Shoulder force, deflection and T1y acceleration corridors were developed using a minimization of cumulative variance technique.
Technical Paper

Using Pressure to Predict Liver Injury Risk from Blunt Impact

2007-10-29
2007-22-0017
Liver trauma research suggests that rapidly increasing internal pressure plays a role in causing blunt liver injury. Knowledge of the relationship between pressure and the likelihood of liver injury could be used to enhance the design of crash test dummies. The objectives of this study were (1) to characterize the relationship between impact-induced pressures and blunt liver injury in an experimental model to impacts of ex vivo organs; and (2) to compare human liver vascular pressure and tissue pressure in the parenchyma with other biomechanical variables as predictors of liver injury risk. Test specimens were 14 ex vivo human livers. Specimens were perfused with normal saline solution at physiological pressures, and a drop tower applied blunt impact at varying energies. Impact-induced pressures were measured by transducers inserted into the hepatic veins and the parenchyma (caudate lobe) of ex vivo specimens.
Technical Paper

Development of a New Biofidelity Ranking System for Anthropomorphic Test Devices

2002-11-11
2002-22-0024
A new biofidelity assessment system is being developed and applied to three side impact dummies: the WorldSID-α, the ES-2 and the SID-HIII. This system quantifies (1) the ability of a dummy to load a vehicle as a cadaver does, “External Biofidelity,” and (2) the ability of a dummy to replicate those cadaver responses that best predict injury potential, “Internal Biofidelity.” The ranking system uses cadaver and dummy responses from head drop tests, thorax and shoulder pendulum tests, and whole body sled tests. Each test condition is assigned a weight factor based on the number of human subjects tested to form the biomechanical response corridor and how well the biofidelity tests represent FMVSS 214, side NCAP (SNCAP) and FMVSS 201 Pole crash environments.
Technical Paper

Shoulder Impact Response and Injury Due to Lateral and Oblique Loading

2003-10-27
2003-22-0003
Little is known about the response of the shoulder complex due to lateral and oblique loading. Increasing this knowledge of shoulder response due to these types of loading could aid in improving the biofidelity of the shoulder mechanisms of anthropomorphic test devices (ATDs). The first objective of this study was to define force versus deflection corridors for the shoulder corresponding to both lateral and oblique loading. A second focus of the shoulder research was to study the differences in potential injury between oblique and lateral loading. These objectives were carried out by combining previously published lateral impact data from 24 tests along with 14 additional recently completed lateral and oblique tests. The newly completed tests utilized a pneumatic ram to impact the shoulder of approximately fiftieth percentile sized cadavers at the level of the glenohumeral joint with a constant speed of approximately 4.4 m/sec.
X