Refine Your Search

Topic

Author

Affiliation

Search Results

Video

Comparing Dolly Rollover Testing to Steer-Induced Rollover Events for an Enhanced Understanding of Off-Road Rollover Dynamics

2011-11-01
The field of motor vehicle rollover research and testing has been one of multiple and varied approaches, dating back to at least the 1930's. The approach has been as simple as tipping a vehicle over at the top of a steep hill ( Wilson et al., 1972 ), to as complex as releasing a vehicle from an elevated roll spit mounted to the rear of a moving tractor and trailer ( Cooper et al., 2001 and Carter et al., 2002 ). Presenter Peter Luepke, P Luepke Consulting
Journal Article

Comparison Study of Malaysian Driver Seating Position in SAEJ1517 Accommodation Model

2019-04-08
Abstract A key element in an ergonomically designed driver’s seat in a car is the correct identification of driver seating position and posture accommodation. Current practice by the automotive Original Equipment Manufacturer (OEM) is to utilize the Society of Automotive Engineering (SAE) J1517 standard practice as a reference. However, it was found that utilizing such guidelines, which were developed based on the American population, did not fit well with the anthropometry and stature of the Malaysian population. This research seeks to address this issue by comparing the SAE J1517 Model against Malaysian preferred driving position. A total of 62 respondents were involved for the driver seating position and accommodation study in the vehicle driver’s seat buck mockup survey and measurements. The results have shown that the Malaysian drivers prefer to sit forward as compared to the SAE J1517 Model and have shorter posture joint angle.
Technical Paper

Optimizing Seat Belt and Airbag Designs for Rear Seat Occupant Protection in Frontal Crashes

2017-11-13
2016-32-0041
Recent field data have shown that the occupant protection in vehicle rear seats failed to keep pace with advances in the front seats likely due to the lack of advanced safety technologies. The objective of this study was to optimize advanced restraint systems for protecting rear seat occupants with a range of body sizes under different frontal crash pulses. Three series of sled tests (baseline tests, advanced restraint trial tests, and final tests), MADYMO model validations against a subset of the sled tests, and design optimizations using the validated models were conducted to investigate rear seat occupant protection with 4 Anthropomorphic Test Devices (ATDs) and 2 crash pulses.
Standard

Impact Testing of Automated Vehicles

2021-05-11
WIP
J3255
Dynamic impact test represent various automotive collision conditions. The impact testing recommended practice is intended to recognize the capabilities of autonomous vehicles while at the same time recognizing the vehicle fleet into which they are introduced will consist of non-autonomous vehicles for a considerable period of time. The scope of the document is to cover the range of impact conditions expected taking into account the capabilities of the vehicle and the impact testing technology now available for performance evaluation including virtual and physical testing.
Standard

Mitigation for Loss-of-Control Accidents in Transport Airplanes

2010-08-12
WIP
ARP6149
Prevention of catastrophic upset mishaps cannot depend solely on recovery training. The proposed document should complement the training initiatives already in place. As a committee dealing with transport human factors and handling qualities, the output must consider both issues. At the same time, we cannot ignore initial and recurrent training issues and the widespread use of ground-based simulators. The plan would follow the approach taken in the 2003 S-7 white paper but would extend the scope to all forms of LOC, not just repeated rudder reversals. As with the white pa-per, the new document would have sections on transport handling qualities, flight control modes, aircraft displays, simulator requirements, and approval for IFR test evaluations as well as covering training issues. This new document would complement, not replace documents such as the Airplane Upset Recovery Training Aid.
Journal Article

Vehicle Chassis, Body, and Seat Belt Buckle Acceleration Responses in the Vehicle Crash Environment

2009-04-20
2009-01-1246
For over 30 years, field research and laboratory testing has consistently demonstrated that proper utilization of a seat belt dramatically reduces the risk of occupant death or serious injury in motor vehicle crashes. The injury prevention benefits of seat belts require that they remain fastened during collisions. Federal Motor Vehicle Safety Standards and SAE Recommended Practices set forth seat belt requirements to ensure proper buckle performance in accident conditions. Numerous analytical and laboratory studies have investigated buckle inertial release properties. Studies have repeatedly demonstrated that current buckle designs have inertial release thresholds well above those believed to occur in real-world crashes. Nevertheless, inertial release theories persist. Various conceptual amplification theories, coupled with high magnitude accelerations measured on vehicle frame components are used as support for these release theories.
Journal Article

Postural Comfort Inside a Car: Development of an Innovative Model to Evaluate the Discomfort Level

2009-04-20
2009-01-1163
How can car designers evaluate device’s position inside a car today? Today only subjective tests or “reachability” tests are made to assess if a generic user is able to reach devices, but it’s no longer enough. The aim of this study is to identify an instrument (index) that is able to provide a numerical information about the discomfort level connected with a posture that is kept inside a car to reach a device, by this instrument it should be possible not only judge a posture, but also compare different solutions and get rapid and accurate evaluations. In the state of the art there are many indexes developed to evaluate postural comfort (like RULA, REBA and LUBA [3, 4, 5]) but none of them has been realized to evaluate postures’ conditions that can be detected inside a car, so their evaluations cannot be acceptable.
Standard

Aero-Capable Ground Vehicle Impact Testing

2022-03-08
WIP
J3276
This document provides recommended practices for impact testing of ground vehicle that are also aero-capable. The scope characterizes recommended impact testing taking into account the unique design characteristics involved in aero-capable ground vehicle
Journal Article

Improving Cabin Thermal Comfort by Controlling Equivalent Temperature

2009-11-10
2009-01-3265
An aircraft environmental control system (ECS) is commonly designed for a cabin that has been divided into several thermal control zones; each zone has an air flow network that pulls cabin air over an isolated thermocouple. This single point measurement is used by the ECS to control the air temperature and hence the thermal environment for each zone. The thermal environment of a confined space subjected to asymmetric thermal loads can be more fully characterized, and subsequently better controlled, by determining its “equivalent temperature.” This paper describes methodology for measuring and controlling cabin equivalent temperature. The merits of controlling a cabin thermal zone based on its equivalent temperature are demonstrated by comparing thermal comfort, as predicted by a “virtual thermal manikin,” for both air-temperature and equivalent-temperature control strategies.
Journal Article

Mitigating Heavy Truck Rear-End Crashes with the use of Rear-Lighting Countermeasures

2010-10-05
2010-01-2023
In 2006, there were approximately 23,500 rear-end crashes involving heavy trucks (i.e., gross vehicle weight greater than 4,536 kg). The Enhanced Rear Signaling (ERS) for Heavy Trucks project was developed by the Federal Motor Carrier Safety Administration (FMCSA) to investigate methods to reduce or mitigate those crashes where a heavy truck has been struck from behind by another vehicle. Visual warnings have been shown to be effective, assuming the following driver is looking directly at the warning display or has his/her eyes drawn to it. A visual warning can be placed where it is needed and it can be designed so that its meaning is nearly unambiguous. FMCSA contracted with the Virginia Tech Transportation Institute (VTTI) to investigate potential benefit of additional rear warning-light configurations as rear-end crash countermeasures for heavy trucks.
Journal Article

The Effectiveness of Curtain Side Air Bags in Side Impact Crashes

2011-04-12
2011-01-0104
Accident data show that the head and the chest are the most frequently injured body regions in side impact fatal accidents. Curtain side air bag (CSA) and thorax side air bag (SAB) have been installed by manufacturers for the protection devices for these injuries. In this research, first we studied the recent side impact accident data in Japan and verified that the head and chest continued to be the most frequently injured body regions in fatal accidents. Second, we studied the occupant seating postures in vehicles on the roads, and found from the vehicle's side view that the head location of 56% of the drivers was in line or overlapped with the vehicle's B-pillar. This observation suggests that in side collisions head injuries may occur frequently due to contacts with the B-pillar. Third, we conducted a side impact test series for struck vehicles with and without CSA and SAB.
Journal Article

Development of Advanced EuroSID-2 and EuroSID-2re Radioss Dummies

2010-04-12
2010-01-0215
EuroSID-2 and EuroSID-2re are among the most frequently used side impact dummies in vehicle crash safety. Radioss is one of most widely applied finite element codes for crash safety analysis. To meet the needs of crash safety analysis and to exploit the potential of the Radioss code, a new generation of EuroSID-2 (ES2) and EuroSID-2re (ES2_RE) Radioss dummies was developed at First Technology Safety System (FTSS) in collaboration with Altair. This paper describes in detail the development of the ES2/ES2_RE dummies. Firstly whole dummy meshes were created based on CAD data and intensive efforts were made to obtain penetration/intersection-free models. Secondly FTSS finite element certificate tests at component level were conducted to obtain satisfactory component performances. These tests include the head drop test, the neck pendulum test, the lumbar pendulum test and the thorax drop test [ 1 , 2 ].
Journal Article

Validation of Sled Tests for Far-Side Occupant Kinematics Using MADYMO

2010-04-12
2010-01-1160
Far-side occupants are not addressed in current government regulations around the world even though they account for up to 40% of occupant HARM in side impact crashes. Consequently, there are very few crash tests with far-side dummies available to researchers. Sled tests are frequently used to replicate the dynamic conditions of a full-scale crash test in a controlled setting. However, in far-side crashes the complexity of the occupant kinematics is increased by the longer duration of the motion and by the increased rotation of the vehicle. The successful duplication of occupant motion in these crashes confirms that a sled test is an effective, cost-efficient means of testing and developing far-side occupant restraints or injury countermeasures.
Journal Article

Occupant Responses in Child Restraint Systems Subjected to Full-Car Side Impact Tests

2010-04-12
2010-01-1043
Accident data show that the injury risks to children seated in child restraint systems (CRSs) are higher in side collisions than any other type of collision. To investigate child injury in the CRS in a side impact, it is necessary to understand the occupant responses in car-to-car crash tests. In this research, a series of full car side impact tests based on the ECE R95 test procedure was conducted. In the vehicle's struck-side rear seat location, a Q3s three-year-old child dummy was seated in a forward facing (FF) CRS, and a CRABI six-month-old (6MO) infant dummy was seated in a rear facing (RF) CRS and also was placed in car-bed restraint. In the non-struck side rear seat location, the RF CRSs also were installed. In addition to testing the CRSs installed by a seatbelt, an ISOFIX FF CRS and an ISOFIX RF CRS were tested. For the evaluations, occupant kinematic behavior and injury measures were compared.
Journal Article

Dynamic Response of Vehicle Roof Structure and ATD Neck Loading During Dolly Rollover Tests

2010-04-12
2010-01-0515
The debate surrounding roof deformation and occupant injury potential has existed in the automotive community for over 30 years. In analysis of real-world rollovers, assessment of roof deformation and occupant compartment space starts with the post-accident roof position. Dynamic movement of the roof structure during a rollover sequence is generally acknowledged but quantification of the dynamic roof displacement has been limited. Previous assessment of dynamic roof deformation has been generally limited to review of the video footage from staged rollover events. Rollover testing for the evaluation of injury potential has typically been studied utilizing instrumented test dummies, on-board and off-board cameras, and measurements of residual crush. This study introduces an analysis of previously undocumented real-time data to be considered in the evaluation of the roof structure's dynamic behavior during a rollover event.
Journal Article

Subsystem Rollover Tests for the Evaluation of ATD Kinematics and Restraints

2010-04-12
2010-01-0518
The development of a repeatable dynamic rollover test methodology with meaningful occupant protection performance objectives has been a longstanding and unmet challenge. Numerous studies have identified the random and chaotic nature of rollover crashes, and the difficulty associated with simulating these events in a laboratory setting. Previous work addressed vehicle level testing attempting to simulate an entire rollover event but it was determined that this test methodology could not be used for development of occupant protection restraint performance objectives due to the unpredictable behavior of the vehicle during the entire rollover event. More recent efforts have focused on subsystem tests that simulate distinct phases of a rollover event, up to and including the first roof-to-ground impact.
Journal Article

Comparison of the THOR and Hybrid III Responses in Oblique Impacts

2014-04-01
2014-01-0559
NHTSA has been investigating a new test mode in which a research moving deformable barrier (RMDB) impacts a stationary vehicle at 90.1 kph, a 15 degree angle, and a 35% vehicle overlap. The test utilizes the THOR NT with modification kit (THOR) dummy positioned in both the driver and passenger seats. This paper compares the behavior of the THOR and Hybrid III dummies during this oblique research test mode. A series of four full vehicle oblique impact crash tests were performed. Two tests were equipped with THOR dummies and two tests were equipped with Hybrid III dummies. All dummies represent 50th percentile males and were positioned in the vehicle according to the FMVSS208 procedure. The Hybrid III dummies were instrumented with the Nine Accelerometer Package (NAP) to calculate brain injury criteria (BrIC) as well as THOR-Lx lower legs. Injury responses were recorded for each dummy during the event. High speed cameras were used to capture vehicle and dummy kinematics.
Journal Article

Comprehensive Array Measurements of In-Car Sound Field in Magnitude and Phase for Active Sound Generation and Noise Control

2014-06-30
2014-01-2046
When employing in-car active sound generation (ASG) and active noise cancellation (ANC), the accurate knowledge of the vehicle interior sound pressure distribution in magnitude as well as phase is paramount. Revisiting the ANC concept, relevant boundary conditions in spatial sound fields will be addressed. Moreover, within this study the controllability and observability requirements in case of ASG and ANC were examined in detail. This investigation focuses on sound pressure measurements using a 24 channel microphone array at different heights near the head of the driver. A shaker at the firewall and four loudspeakers of an ordinary in-car sound system have been investigated in order to compare their sound fields. Measurements have been done for different numbers of passengers, with and without a dummy head and real person on the driver seat. Transfer functions have been determined with a log-swept sine technique.
Journal Article

Modeling of Adaptive Energy Absorbing Steering Columns for Dynamic Impact Simulations

2014-04-01
2014-01-0802
The objective of this paper focused on the modeling of an adaptive energy absorbing steering column which is the first phase of a study to develop a modeling methodology for an advanced steering wheel and column assembly. Early steering column designs often consisted of a simple long steel rod connecting the steering wheel to the steering gear box. In frontal collisions, a single-piece design steering column would often be displaced toward the driver as a result of front-end crush. Over time, engineers recognized the need to reduce the chance that a steering column would be displaced toward the driver in a frontal crash. As a result, collapsible, detachable, and other energy absorbing steering columns emerged as safer steering column designs. The safety-enhanced construction of the steering columns, whether collapsible, detachable, or other types, absorb rather than transfer frontal impact energy.
Journal Article

Modeling of an Advanced Steering Wheel and Column Assembly for Frontal and Side Impact Simulations

2014-04-01
2014-01-0803
This paper presents the final phase of a study to develop the modeling methodology for an advanced steering assembly with a safety-enhanced steering wheel and an adaptive energy absorbing steering column. For passenger cars built before the 1960s, the steering column was designed to control vehicle direction with a simple rigid rod. In severe frontal crashes, this type of design would often be displaced rearward toward the driver due to front-end crush of the vehicle. Consequently, collapsible, detachable, and other energy absorbing steering columns emerged to address this type of kinematics. These safety-enhanced steering columns allow frontal impact energy to be absorbed by collapsing or breaking the steering columns, thus reducing the potential for rearward column movement in severe crashes. Recently, more advanced steering column designs have been developed that can adapt to different crash conditions including crash severity, occupant mass/size, seat position, and seatbelt usage.
X