Refine Your Search

Search Results

Viewing 1 to 6 of 6
Technical Paper

Durability Improvisation of Exhaust System Resonator Internal

2013-01-09
2013-26-0053
A combined Computer Aided Engineering (CAE) simulation and physical fatigue testing of a passenger car exhaust system resonator with wire mesh seal between the inlet and outlet pipe is performed to evaluate the durability and improvise the design. The outlet pipe end cap of the exhaust system resonator deformed and cracked at the fillet region repeatedly upon the application of the maximum load from a pre developed accelerated specification test. However, the system meets the end usage on-road durability target of 5 years / 1,00,000 km. There is a gap between the accelerated bench test and the end usage durability target. The current study correlates CAE simulation and biaxial fatigue testing and improvise possible alternate resonator design. Conventionally, components passing the accelerated test always meets the end usage durability target whereas components meeting the end usage durability target need not necessarily pass the accelerated test.
Technical Paper

Advanced Three-Way Converter System for High Temperature Exhaust Aftertreatment

1997-02-24
970265
An advanced three-way converter system with significant improvements in light-off performance, conversion efficiency, thermal stability and physical durability at high operating temperature is described. The converter system is comprised of a light-weight ceramic substrate with high surface area triangular cell structure, a new catalyst formulation with enhanced thermal stability and good substrate compatibility, and a durable packaging design which together lead to consistent improvements in high temperature performance and durability. Experimental data including FTP performance, canning trials, and high temperature vibration and thermal shock tests for both the advanced and standard three-way converter systems are presented.
Technical Paper

Influence of Coupled Analysis for a Hot End Exhaust System Validation

2014-09-30
2014-01-2354
Simulation's drive towards reality boundary conditions is the toughest challenge. Experience has shown that often the most significant source of error in thermal and dynamic analyses is associated within specified boundary conditions. Typically, validating the system by considering both thermal and dynamic loads with predefined assumptions is time consuming and inconclusive when confronted with reality boundary conditions. Thus, the solution comes in unique way of combining thermal and dynamic loads with specified boundary conditions and will convey computational results closer to the real scenario. As a consequence, strain concentrated regions due to thermal expansion are aggregated more, when coupled with dynamic loading. The stress generated by the coupled analyses will prove to be critical in concerning the durability issue of the hot end system. These conditions are evaluated by a finite element model through linear and non-linear approaches and results summarized.
Technical Paper

Partial Controlled Canning for Thin Wall and Ultra Thin Wall Substrates - A New Approach

2014-09-30
2014-01-2348
The trend lately has shifted towards usage of thin wall and ultra-thin wall substrates. This change has come to existence due to the increased acting surface area available in these substrates. However these types of substrates have reduced isostatic strength comparatively, reducing its canning durability. This phenomenon has induced a new canning methodology which shall not disturb the substrate integrity during canning and also perform effectively to the requirements. This can be achieved by controlled canning which includes a huge investment and so a new methodology has been devised using the available resources and a partial controlled canning process is established and verified for canning performance and found to be effective. The paper shall include the procedural explanation and a set of results obtained by the new methodology to support its effectiveness.
Technical Paper

Heat Shield Insulation for Thermal Challenges in Automotive Exhaust System

2019-11-21
2019-28-2539
While advanced automotive system assemblies contribute greater value to automobile safety, reliability, emission/noise performance and comfort, they are also generating higher temperatures that can reduce the functionality and reliability of the system over time. Thermal management and proper insulation are extremely important and highly demanding for the functioning of BSVI and RDE vehicles. Frugal engineering is mandatory to develop heat shield in the exhaust system with minimum heat loss. Heat shield design parameters such as insulation material type, insulation material composition, insulation thickness, insulation density, air gap thickness and outer layer material are studied for their influences on skin temperature using mathematical calculation, CFD simulation and measurement. Simulation results are comparable to that of the test results within 10% deviation.
Technical Paper

Computational Simulation to Validate Resonator through Bending Moment

2015-06-15
2015-01-2290
Bending moment is one of the strongest pursuits in resonator's structural validation. Eigen problems play a key role in the stability and forced vibration analysis of structures. This paper explains the methodology to determine the weak points in the resonator assembly considering the additional effects of the installation forces and temperature impacts. Using strain energy plots, weakest part of the product is identified in the initial stage. The solution comes in unique way of utilizing the worst case scenarios possible. As a consequence, the stress generated by these analyses will prove to be critical in concerning the durability issue of the system. These conditions are evaluated by a finite element model through linear approaches and results are summarized.
X