Refine Your Search

Search Results

Viewing 1 to 6 of 6
Technical Paper

Comparison of PMHS, WorldSID, and THOR-NT Responses in Simulated Far Side Impact

2007-10-29
2012-01-1537
Injury to the far side occupant has been demonstrated as a significant portion of the total trauma in side impacts. The objective of the study was to determine the response of PMHS in far side impact configurations, with and without generic countermeasures, and compare responses to the WorldSID and THOR dummies. A far side impact buck was designed for a sled test system that included a center console and three-point belt system. The buck allowed for additional options of generic countermeasures including shoulder or thorax plates or an inboard shoulder belt. The entire buck could be mounted on the sled in either a 90-degree (3-o'clock PDOF) or a 60-degree (2-o'clock PDOF) orientation. A total of 18 tests on six PMHS were done to characterize the far side impact environment at both low (11 km/h) and high (30 km/h) velocities. WorldSID and THOR-NT tests were completed in the same configurations to conduct matched-pair comparisons.
Technical Paper

ASSESSING THE INFLUENCE OF CRASH PULSE, SEAT FORCE CHARACTERISTICS, AND HEAD RESTRAINT POSITION ON NICmax IN REAR-END CRASHES USING A MATHEMATICAL BioRID DUMMY

1999-09-23
1999-13-0015
The major car and crash related risk factors for Whiplash Associated Disorders (WAD) 1-3 long-term neck injuries in rear-end crashes are the shape of the crash pulse, the seat-force characteristics and the head restraint position. However, the specific roles of these factors are not yet fully understood, which makes it difficult to find adequate countermeasures and to design protective car seats. In order to study these issues, a mathematical MADYMO model of the first version of the Biofidelic Rear Impact Dummy (BioRID I) has previously been developed. In addition, a neck injury criterion, NICmax, has been proposed and evaluated by means of dummy, human and rear-end impact simulations. In this paper the MADYMO BioRID I and four car seats ranked differently according to a disability ranking list are used to study the influence of crash pulse, seat-force characteristics, and head restraint position on the NICmax in rear-end crashes.
Technical Paper

Comparison of PMHS, WorldSID, and THOR-NT Responses in Simulated Far Side Impact

2007-10-29
2007-22-0014
Injury to the far side occupant has been demonstrated as a significant portion of the total trauma in side impacts. The objective of the study was to determine the response of PMHS in far side impact configurations, with and without generic countermeasures, and compare responses to the WorldSID and THOR dummies. A far side impact buck was designed for a sled test system that included a center console and three-point belt system. The buck allowed for additional options of generic countermeasures including shoulder or thorax plates or an inboard shoulder belt. The entire buck could be mounted on the sled in either a 90-degree (3-o'clock PDOF) or a 60-degree (2-o'clock PDOF) orientation. A total of 18 tests on six PMHS were done to characterize the far side impact environment at both low (11 km/h) and high (30 km/h) velocities. WorldSID and THOR-NT tests were completed in the same configurations to conduct matched-pair comparisons.
Technical Paper

Occupant-to-Occupant Interaction and Impact Injury Risk in Side Impact Crashes

2008-11-03
2008-22-0013
To date, efforts to improve occupant protection in side impact crashes have concentrated on reducing the injuries to occupants seated on the struck side of the vehicle arising from contact with the intruding side structure and/or external objects. Crash investigations indicate that occupants on the struck side of a vehicle may also be injured by contact with an adjacent occupant in the same seating row. Anecdotal information suggests that the injury consequences of occupant-to-occupant impacts can be severe, and sometimes life threatening. Occupant-to-occupant impacts leave little evidence in the vehicle, and hence these impacts can be difficult for crash investigators to detect and may be underreported. The objective of this study was to evaluate the risk of impact injury from occupant-to-occupant impacts in side impact vehicle crashes. The study examined 9608 crashes extracted from NASS/CDS 1993-2006 to investigate the risk of occupant-to-occupant impacts.
Technical Paper

Whole-body Kinematic and Dynamic Response of Restrained PMHS in Frontal Sled Tests

2006-11-06
2006-22-0013
The literature contains a wide range of response data describing the biomechanics of isolated body regions. Current data for the validation of frontal anthropomorphic test devices and human body computational models lack, however, a detailed description of the whole-body response to loading with contemporary restraints in automobile crashes.
Technical Paper

Rear Seat Occupant Safety: An Investigation of a Progressive Force-Limiting, Pretensioning 3-Point Belt System Using Adult PMHS in Frontal Sled Tests

2009-11-02
2009-22-0002
Rear seat adult occupant protection is receiving increased attention from the automotive safety community. Recent anthropomorphic test device (ATD) studies have suggested that it may be possible to improve kinematics and reduce injuries to rear seat occupants in frontal collisions by incorporating shoulder-belt force-limiting and pretensioning (FL+PT) technologies into rear seat 3-point belt restraints. This study seeks to further investigate the feasibility and potential kinematic benefits of a FL+PT rear seat, 3-point belt restraint system in a series of 48 kmh frontal impact sled tests (20 g, 80 ms sled acceleration pulse) performed with post mortem human surrogates (PMHS). Three PMHS were tested with a 3-point belt restraint with a progressive (two-stage) force limiting and pretensioning retractor in a sled buck representing the rear seat occupant environment of a 2004 mid-sized sedan.
X