Refine Your Search

Search Results

Viewing 1 to 8 of 8
Standard

Low-Permeation Fuel Fill and Vent Tube

2021-09-14
CURRENT
J2405_202109
This SAE Standard covers the minimum requirements for a low-permeation tubing (100 g/m2/day or less) for use as a low pressure (14.5 kPa) liquid- or vapor-carrying component for use in gasoline or diesel fuel filler, vent, and vapor systems. The construction shall be designed to be functional over a temperature range of -40 to 100 °C for the T1 designation, or -40 to 125 °C for the T2 designation.
Standard

Low-Permeation Fuel Fill and Vent Tube

1997-08-01
HISTORICAL
J2405_199708
This SAE Standard covers the minimum requirements for a low-permeation tubing (100 g/m2·day or less) for use as a low pressure (14.5 kPa) liquid- or vapor-carrying component for use in gasoline or diesel fuel filler, vent, and vapor systems. The construction shall be designed to be functional over a temperature range of –40 °C to 100 °C for the T1 designation, or –40 °C to 125 °C for the T2 designation.
Standard

Low-Permeation Fuel Fill and Vent Tube

2007-07-02
HISTORICAL
J2405_200707
This SAE Standard covers the minimum requirements for a low-permeation tubing (100 g/m2·day or less) for use as a low pressure (14.5 kPa) liquid- or vapor-carrying component for use in gasoline or diesel fuel filler, vent, and vapor systems. The construction shall be designed to be functional over a temperature range of –40 °C to 100 °C for the T1 designation, or –40 °C to 125 °C for the T2 designation.
Standard

Test Method for Evaluating the Electrical Resistance of Coolant System Hose Covers

2021-08-12
CURRENT
J2790_202108
This test method provides a standardized procedure for evaluating the electrical resistance of automotive coolant hose covers. It is known that an electrical potential exists between the engine and the radiator. Coolant hose cover conductivity has been determined to be a factor to reduce hose clamp life when vehicle build variations allow possible contact of the hose or the clamp to metal components on the radiator and engine thus completing an electrical circuit. The ensuing electrical current can undercut the clamp protective coating, leaving it vulnerable to the corrosive effects of road salts, moisture, and other environmental contaminants. SAE Recommended Practice J1684 addresses the electrochemical resistance of the tube portion of the coolant hose.
Standard

Test Method for Evaluating the Electrical Resistance of Coolant System Hose Covers

2010-02-15
HISTORICAL
J2790_201002
This test method provides a standardized procedure for evaluating the electrical resistance of automotive coolant hose covers. It is known that an electrical potential exists between the engine and the radiator. Coolant hose cover conductivity has been determined to be a factor to reduce hose clamp life when vehicle build variations allow possible contact of the hose or the clamp to metal components on the radiator and engine thus completing an electrical circuit. The ensuing electrical current can undercut the clamp protective coating, leaving it vulnerable to the corrosive effects of road salts, moisture, and other environmental contaminants. SAE Recommended Practice J1684 addresses the electrochemical resistance of the tube portion of the coolant hose.
Standard

Test Method for Evaluating the Electrical Resistance of Coolant System Hose Covers

2007-06-15
HISTORICAL
J2790_200706
This test method provides a standardized procedure for evaluating the electrical resistance of automotive coolant hose covers. It is known that an electrical potential exists between the engine and the radiator. Coolant hose cover conductivity has been determined to be a factor to reduce hose clamp life when vehicle build variations allow possible contact of the hose or the clamp to metal components on the radiator and engine thus completing an electrical circuit. The ensuing electrical current can undercut the clamp protective coating, leaving it vulnerable to the corrosive effects of road salts, moisture, and other environmental contaminants. SAE Recommended Practice J1684 addresses the electrochemical resistance of the tube portion of the coolant hose.
Standard

Fuel and Oil Hoses

2008-12-23
HISTORICAL
J30_200812
This SAE standard covers fuel, oil, or emission hose for use in coupled and uncoupled applications, for use with gasoline, oil, diesel fuel, lubrication oil, or the vapors present in either the fuel system or in the crankcase of internal combustion engines in mobile or stationary applications. This standard covers the hose portion only. If assembly / coupling is required, that is to be agreed to between the customer and assembler, along with the specific requirements.
Standard

Fuel and Oil Hoses

2012-02-17
HISTORICAL
J30_201202
This SAE standard covers fuel, oil, or emission hose for use in coupled and uncoupled applications, for use with gasoline, oil, diesel fuel, lubrication oil, or the vapors present in either the fuel system or in the crankcase of internal combustion engines in mobile or stationary applications. This standard covers the hose portion only. If assembly / coupling is required, that is to be agreed to between the customer and assembler, along with the specific requirements.
X