Refine Your Search

Topic

Search Results

Journal Article

Integrated Numerical and Experimental Approach to Determine the Cooling Air Mass Flow in Different Vehicle Development Stages

2010-04-12
2010-01-0287
This paper presents an integrated numerical and experimental approach to take best possible advantage of the common development tools at hand (1D, CFD and wind tunnel) to determine the cooling air mass flow at the different vehicle development stages. 1D tools can be used early in development when neither 3D data nor wind tunnel models with detailed underhood flow are available. A problem that has to be resolved is the dependency on input data. In particular, the pressure coefficients on the outer surface (i.e. at the air inlet and outlet region) and the pressure loss data of single components are of great importance since the amount of cooling air flow is directly linked to these variables. The pressure coefficients at the air inlet and outlet are not only a function of vehicle configuration but also of driving velocity and fan operation. Both, static and total pressure coefficient, yield different advantages and disadvantages and can therefore both be used as boundary conditions.
Journal Article

Simulation of Underbody Contribution of Wind Noise in a Passenger Automobile

2013-05-13
2013-01-1932
Wind noise is a significant source of interior noise in automobiles at cruising conditions, potentially creating dissatisfaction with vehicle quality. While wind noise contributions at higher frequencies usually originate with transmission through greenhouse panels and sealing, the contribution coming from the underbody area often dominates the interior noise spectrum at lower frequencies. Continued pressure to reduce fuel consumption in new designs is causing more emphasis on aerodynamic performance, to reduce drag by careful management of underbody airflow at cruise. Simulation of this airflow by Computational Fluid Dynamics (CFD) tools allows early optimization of underbody shapes before expensive hardware prototypes are feasible. By combining unsteady CFD-predicted loads on the underbody panels with a structural acoustic model of the vehicle, underbody wind noise transmission could be considered in the early design phases.
Technical Paper

Thermal Behavior of an Electronics Compartment with Respect to Real Driving Conditions

2020-04-14
2020-01-1299
The reliability of electronic components is of increasing importance for further progress towards automated driving. Thermal aging processes such as electromigration is one factor that can negatively affect the reliability of electronics. The resulting failures depend on the thermal load of the components within the vehicle lifetime - called temperature collective - which is described by the temperature frequency distribution of the components. At present, endurance testing data are used to examine the temperature collective for electronic components in the late development stage. The use of numerical simulation tools within Vehicle Thermal Management (VTM) enables lifetime thermal prediction in the early development stage, but also represents challenges for the current VTM processes [1, 2]. Due to the changing focus from the underhood to numerous electronic compartments in vehicles, the number of simulation models has steadily increased.
Journal Article

From Exterior Wind Noise Loads to Interior Cabin Noise: A Validation Study of a Generic Automotive Vehicle

2015-06-15
2015-01-2328
The object of the validation study presented in this paper is a generic vehicle, the so-called SAE body, developed by a consortium of German car manufacturers (Audi, Daimler, Porsche, Volkswagen). Many experiments have been performed by the abovementioned consortium on this object in the past to investigate its behavior when exposed to fluid flow. Some of these experiments were used to validate the simulation results discussed in the present paper. It is demonstrated that the simulation of the exterior flow is able to represent the transient hydrodynamic structures and at the same time both the generation of the acoustic sources and the propagation of the acoustic waves. Performing wave number filtering allows to identify the acoustic phenomena and separate them from the hydrodynamic effects. In a next step, the noise transferred to the interior of the cabin through the glass panel was calculated, using a Statistical Energy Analysis approach.
Journal Article

Exhaust and Muffler Aeroacoustics Predictions using Lattice Boltzmann Method

2015-06-15
2015-01-2314
Exhaust and muffler noise is a challenging problem in the transport industry. While the main purpose of the system is to reduce the intensity of the acoustic pulses originating from the engine exhaust valves, the back pressure induced by these systems must be kept to a minimum to guarantee maximum performance of the engine. Emitted noise levels have to ensure comfort of the passengers and must respect community noise regulations. In addition, the exhaust noise plays an important role in the brand image of vehicles, especially with sports car where it must be tuned to be “musical”. However, to achieve such performances, muffler and exhaust designs have become quite complex, often leading to the rise of undesired self-induced noise. Traditional purely acoustic solvers, like Boundary Element Methods (BEM), have been applied quite successfully to achieve the required acoustic tuning.
Journal Article

Subjective Perception and Evaluation of Driving Dynamics in the Virtual Test Drive

2017-03-28
2017-01-1564
In addition to the analysis of human driving behavior or the development of new advanced driver assistance systems, the high simulation quality of today’s driving simulators enables investigations of selected topics pertaining to driving dynamics. With high reproducibility and fast generation of vehicle variants the subjective evaluation process leads to a better system understanding in the early development stages. The transfer of the original on-road test run to the virtual reality of the driving simulator includes the full flexibility of the vehicle model, the maneuver and the test track, which allows new possibilities of investigation. With the opportunity of a realistic whole-vehicle simulation provided by the Stuttgart Driving Simulator new analysis of the human’s thresholds of perception are carried out.
Technical Paper

CFD Investigations of Wind Tunnel Interference Effects

2007-04-16
2007-01-1045
Wind tunnel interference effects are still considered to be negligible - or at least undesired - in automotive aerodynamics. Consequently, up to now there is no standard correction method which is used in everyday wind tunnel testing although a lot of research has been done in recent years. In most full-vehicle CFD simulations, wind tunnel interference effects are not simulated. The flow about the car is computed under idealized conditions. The wind tunnel is designed to simulate these conditions but fails to do so to some degree due to its limited size. Therefore a comparison of blockage-free CFD results and wind tunnel measurements is deficient. Hence CFD simulations including wind tunnel interference effects should be favored in the future for validation purposes. Furthermore, CFD offers new possibilities to investigate individual contributions to wind tunnel interference effects and therefore could help to increase the understanding of the flow in the wind tunnel.
Technical Paper

CFD Validation Study for a Sedan Scale Model in an Open Jet Wind Tunnel

2008-04-14
2008-01-0325
Aerodynamic simulations using CFD is now a standard tool in the automotive industry, and is becoming more and more integrated in the aerodynamic design process of new vehicles. This process is distinguished by parallel development with wind tunnel experiments and CFD simulation results, which demands comparable results to be generated by the two development tools. As wind tunnel effects are not simulated in most industrial applications of CFD, the comparison with experimental results normally show differences partly due to wind tunnel effects and ground simulation effects. Therefore a deeper understanding of wind tunnel effects and methods to fully reproduce experimental values with CFD is necessary. In this paper, an extensive validation study with a detailed scale notchback model inside an open jet wind tunnel is presented. This study includes experimental data from the real wind tunnel as well as CFD simulation results with and without wind tunnel effects.
Technical Paper

A CFD/SEA Approach for Prediction of Vehicle Interior Noise due to Wind Noise

2009-05-19
2009-01-2203
For most car manufacturers, aerodynamic noise is becoming the dominant high frequency noise source (> 500 Hz) at highway speeds. Design optimization and early detection of issues related to aeroacoustics remain mainly an experimental art implying high cost prototypes, expensive wind tunnel sessions, and potentially late design changes. To reduce the associated costs as well as development times, there is strong motivation for the development of a reliable numerical prediction capability. The goal of this paper is to present a computational approach developed to predict the greenhouse windnoise contribution to the interior noise heard by the vehicle passengers. This method is based on coupling an unsteady Computational Fluid Dynamics (CFD) solver for the windnoise excitation to a Statistical Energy Analysis (SEA) solver for the structural acoustic behavior.
Technical Paper

CFD Approach to Evaluate Wind-Tunnel and Model Setup Effects on Aerodynamic Drag and Lift for Detailed Vehicles

2010-04-12
2010-01-0760
Previous work by the authors showed the development of an aerodynamic CFD model using the Lattice Boltzmann Method for simulating vehicles inside the IVK Model-Scale Wind-Tunnel test-section. In both experiment and simulation, alternate configurations of the wind-tunnel geometry were studied to change the pressure distribution in the wind-tunnel test section, inducing a reduction in aerodynamic drag due to interference between the wind-tunnel geometry and the pressure on the surface of the vehicle. The wind-tunnel pressure distribution was modified by adding so-called “stagnation bodies” inside the collector to create blockage and to increase the pressure in the rear portion of the test section. The primary purpose of previous work was to provide a validated CFD approach for modeling wind-tunnel interference effects, so that these effects can be understood and accounted for when designing vehicles.
Technical Paper

Flow around an Isolated Wheel - Experimental and Numerical Comparison of Two CFD Codes

2004-03-08
2004-01-0445
This paper presents velocity and pressure measurements obtained around an isolated wheel in a rotating and stationary configuration. The flow field was investigated using LDA and a total pressure probe in the model scale wind tunnel at IVK/FKFS. Drag and lift were determined for both configurations as well as for the wheel support only. These results were used as a reference for comparing numerical results obtained from two different CFD codes used in the automotive industry, namely STAR-CD™ and PowerFLOW™. The comparison gives a good overall agreement between the experimental and the simulated data. Both CFD codes show good correlation of the integral forces. The influence of the wheel rotation on drag and lift coefficients is predicted well. All mean flow structures which can be found in the planes measured with LDA can be recognized in the numerical results of both codes. Only small local differences remain, which can be attributed to the different CFD codes.
Technical Paper

Thermal Simulation within the Brake System Design Process

2002-10-06
2002-01-2587
During the acquisition phase brake system supplier have to make predictions on a system's thermal behavior based on very few reliable parameters. Increasing system knowledge requires the usage of different calculation models along with the progress of the project. Adaptive modeling is used in order to integrate test results from first prototypes or benchmark vehicles. Since changes in the brake force distribution have a great impact on the simulation results fading conditions of the linings have to be integrated as well. The principle of co-simulation is used in order to use the actual brake force distribution of the system.
Technical Paper

Estimation of Side Slip Angle Using Measured Tire Forces

2002-03-04
2002-01-0969
Within the scope of a current research project at the Research Institute of Automotive Engineering and Vehicle Engines Stuttgart (FKFS), the potential for an estimation of vehicle side slip angle and yaw rate arising from online measurement of tire forces is evaluated. Investigations focus on how the vehicle state can be determined, if in addition to wheel speeds and steering angle the tire forces currently acting on the vehicle are known. Different estimation procedures based on inverse tire models, direct integration of vehicle accelerations and closed-loop-observer are discussed. The performance is tested with data from vehicle dynamics simulation.
Technical Paper

A New Approach to Predicting Component Temperature Collectives for Vehicle Thermal Management

2017-03-28
2017-01-0134
There is a growing need for life-cycle data – so-called collectives – when developing components like elastomer engine mounts. Current standardized extreme load cases are not sufficient for establishing such collectives. Supplementing the use of endurance testing data, a prediction methodology for component temperature collectives utilizing existing 3D CFD simulation models is presented. The method uses support points to approximate the full collective. Each support point is defined by a component temperature and a position on the time axis of the collective. Since it is the only currently available source for component temperature data, endurance testing data is used to develop the new method. The component temperature range in this data set is divided in temperature bands. Groups of driving states are determined which are each representative of an individual band. Each of the resulting four driving state spaces is condensed into a substitute load case.
Technical Paper

Digital Aeroacoustics Design Method of Climate Systems for Improved Cabin Comfort

2017-06-05
2017-01-1787
Over the past decades, interior noise from wind noise or engine noise have been significantly reduced by leveraging improvements of both the overall vehicle design and of sound package. Consequently, noise sources originating from HVAC systems (Heat Ventilation and Air Conditioning), fans or exhaust systems are becoming more relevant for perceived quality and passenger comfort. This study focuses on HVAC systems and discusses a Flow-Induced Noise Detection Contributions (FIND Contributions) numerical method enabling the identification of the flow-induced noise sources inside and around HVAC systems. This methodology is based on the post-processing of unsteady flow results obtained using Lattice Boltzmann based Method (LBM) Computational Fluid Dynamics (CFD) simulations combined with LBM-simulated Acoustic Transfer Functions (ATF) between the position of the sources inside the system and the passenger’s ears.
Technical Paper

Reducing a Sports Activity Vehicle's Aeroacoustic Noise using a Validated CAA Process

2012-06-13
2012-01-1552
Developing a low interior noise level of vehicles is a big challenge - even a greater one if one thinks about aeroacoustics. Aeroacoustic noise and its origins are usually identified with the help of prototypes when exterior design changes or the replacement of exterior parts like side mirrors are very limited. However, computational aeroacoustic (CAA) methods in virtual project phases offer more design options for the vehicle's geometric shape. The early consideration of aeroacoustic relevant design changes helps to keep project costs low by avoiding tool changes. This paper describes MAGNA STEYR's virtual aeroacoustic process starting from standardized model generation and simulation of wind noise, including the validation of computational results via comparison with measurement data gathered in an acoustic wind tunnel. The simulations are carried out using the commercial CAA code “PowerFLOW” (Exa) based on the Lattice-Boltzmann method.
Technical Paper

Hybrid Technique for Underbody Noise Transmission of Wind Noise

2011-05-17
2011-01-1700
Wind noise has become an important indicator for passenger automobile quality. Several transmission paths can be related to different parts of the vehicle exterior. While the greenhouse (side glasses, windshield, seals & others) often dominates the interior noise level above 500 Hz, the contribution coming from the underbody area usually dominates the interior noise spectrum at lower frequencies. This paper describes a framework of numerical tools which is capable of determining realistic underbody turbulent and acoustic loads being generated for typical driving conditions, as well as performing the noise transmission through underbody panels and the propagation of sound to the drivers ear location.
Technical Paper

Underhood Temperature Analysis in Case of Natural Convection

2005-05-10
2005-01-2045
This paper describes a method to simulate underhood temperature distributions in passenger cars. A simplified engine compartment simulation test rig is used to perform measurements with well known boundary conditions to validate the simulation strategy. The measurement setup corresponds to idle without working fan. The aim of this setup is to validate cases with strong natural convection, e.g. thermal soaking. A coupled steady-state CFD run and thermal analysis is undertaken to simulate the temperature distribution in the test rig. Convective heat transfer coefficients and air temperatures are calculated in StarCD™. The radiative and conductive heat transfer is considered in a RadTherm™ analysis. The strong coupling of flow field and wall temperature in buoyancy driven flows requires an iterative process. Calculated temperatures are compared to measured results in order to validate the simulation method as far as possible. Some of the results are reported in this paper.
Technical Paper

Tool Support for Analyzing and Optimization Methods in Early Brake System Sizing Phases

2000-03-06
2000-01-0442
The manufacturers of passenger cars increasingly assign development and production of complete subsystems to the supplying industry. A brake system supplier has to give predictions about system quality and performance long time before the first prototypical system is built or even before the supplier gets the order for system development. Nowadays, the usage of computer-aided system design and simulation is essential for that task. This article presents a tool designed to support the development process. A special focus will be on how to define quality. A formal definition of quality is provided, illustrated and motivated by two examples.
Technical Paper

An Innovative Test System for Holistic Vehicle Dynamics Testing

2019-04-02
2019-01-0449
In the automotive industry, there is a continued need to improve the development process and handle the increasing complexity of the overall vehicle system. One major step in this process is a comprehensive and complementary approach to both simulation and testing. Knowledge of the overall dynamic vehicle behavior is becoming increasingly important for the development of new control concepts such as integrated vehicle dynamics control aiming to improve handling quality and ride comfort. However, with current well-established test systems, only separated and isolated aspects of vehicle dynamics can be evaluated. To address these challenges and further merge the link between simulation and testing, the Institute of Internal Combustion Engines and Automotive Engineering (IVK), University of Stuttgart is introducing a new Handling Roadway (HRW) Test System in cooperation with The Research Institute of Automotive Engineering and Vehicle Engines Stuttgart (FKFS) and MTS Systems Corporation.
X