Refine Your Search

Topic

Search Results

Journal Article

Development of a Dynamic Driveline Model for a Parallel-Series PHEV

2014-04-01
2014-01-1920
This paper describes the development and experimental validation of a Plug-in Hybrid Electric Vehicle (PHEV) dynamic simulator that enables development, testing, and calibration of a traction control strategy. EcoCAR 2 is a three-year competition between fifteen North American universities, sponsored by the Department of Energy and General Motors that challenges students to redesign a Chevrolet Malibu to have increased fuel economy and decreased emissions while maintaining safety, performance, and consumer acceptability. The dynamic model is developed specifically for the Ohio State University EcoCAR 2 Team vehicle with a series-parallel PHEV architecture. This architecture features, in the front of the vehicle, an ICE separated from an automated manual transmission with a clutch as well as an electric machine coupled via a belt directly to the input of the transmission. The rear powertrain features another electric machine coupled to a fixed ratio gearbox connected to the wheels.
Journal Article

An Iterative Markov Chain Approach for Generating Vehicle Driving Cycles

2011-04-12
2011-01-0880
For simulation and analysis of vehicles there is a need to have a means of generating drive cycles which have properties similar to real world driving. A method is presented which uses measured vehicle speed from a number of vehicles to generate a Markov chain model. This Markov chain model is capable of generating drive cycles which match the statistics of the original data set. This Markov model is then used in an iterative fashion to generate drive cycles which match constraints imposed by the user. These constraints could include factors such number of stops, total distance, average speed, or maximum speed. In this paper, systematic analysis was done for a PHEV fleet which consists of 9 PHEVs that were instrumented using data loggers for a period of approximately two years. Statistical analysis using principal component analysis and a clustering approach was carried out for the real world velocity profiles.
Technical Paper

Onboard Diagnosis of Engine Misfires

1990-09-01
901768
The integrity of the exhaust emission system in a passenger vehicle can best be maintained by monitoring its performance continuously on board the vehicle. It is with the intent of monitoring emission system performance that the California Air Resources Board has proposed regulations which will require vehicles to be equipped with on-board monitoring systems. These proposed regulations are known as OBDII and will probably be followed by similar Federal EPA regulations.This paper discusses a method of monitoring engine misfire as part of the OBDII requirements for passenger vehicle on-board diagnostics. The method is relatively inexpensive in that it uses an existing sensor for measuring instantaneous crankshaft angular position, and utilizes electronic signal processing which can be implemented in relatively inexpensive custom integrated circuits.
Technical Paper

Cleaner Diesel Using Model-Based Design and Advanced Aftertreatment in a Student Competition Vehicle

2008-04-14
2008-01-0868
Traditionally in the United States, Diesel engines have negative connotations, primarily due to their association with heavy duty trucks, which are wrongly characterized as “dirty.” Diesel engines are more energy efficient and produce less carbon dioxide than gasoline engines, but their particulate and NOx emissions are more difficult to reduce than spark ignition engines. To tackle this problem, a number of after-treatment technologies are available, such as Diesel Lean NOx Traps (LNTs)), which reduces oxides of nitrogen, and the Diesel particulate filter (DPF), which reduces particulate matter. Sophisticated control techniques are at the heart of these technologies, thus making Diesel engines run cleaner. Another potentially unattractive aspect of Diesel engines is noise.
Technical Paper

An Electric Traction Platform for Military Vehicles

2004-03-08
2004-01-1583
This paper shall present the design and development of a family of high power, high-speed transport and combat vehicles based on a common module. The system looks to maximize performance at both high-speed operation and low-speed, heavy/severe-duty operation. All-wheel drive/steer-by-wire autonomous traction modules provide the basis for the vehicle family. Each module can continuously develop 300-400 kW of power at the wheels and has nearly double peak capability, exploiting the flexibility of the electric traction system. The maximum starting tractive effort developed by one module can reach 10-15 tons, and the full rated power can be produced at speeds of 100 mph. This paper will present the design and layout of the autonomous modules. Details will be provided about the tandem electric axles, with electric differentials and independent steering.
Technical Paper

Design Optimization of Heavy Vehicles by Dynamic Simulations

2002-11-18
2002-01-3061
Building and testing of physical prototypes for optimization purposes consume significant amount of time, manpower and financial resources. Mathematical formulation and solution of vehicle multibody dynamics equations are also not feasible because of the massive size of the problem. This paper proposes a methodology for vehicle design optimization that does not involve physical prototyping or exhaustive mathematics. The proposed method is fast, cost effective and saves considerable manpower. The methodology uses an industry acknowledged multibody dynamics simulation software (ADAMS) and a flexible architecture to explore large design spaces.
Technical Paper

The 2002 Ohio State University FutureTruck - The BuckHybrid002

2003-03-03
2003-01-1269
This year, in the third year of FutureTruck competition, the Ohio State University team has taken the challenge to convert a 2002 Ford Explorer into a more fuel efficient and environmentally friendly SUV. This goal was achieved by use of a post-transmission, charge sustaining, parallel hybrid diesel-electric drivetrain. The main power source is a 2.5-liter, 103 kW advanced CIDI engine manufactured by VM Motori. A 55 kW Ecostar AC induction electric motor provides the supplemental power. The powertrain is managed by a state of the art supervisory control system which optimizes powertrain characteristics using advanced energy management and emission control algorithms. A unique driver interface implementing advanced telematics, and an interior designed specifically to reduce weight and be more environmentally friendly add to the utility of the vehicle as well as the consumer appeal.
Technical Paper

A Fuzzy Decision-Making System for Automotive Application

1998-02-23
980519
Fault diagnosis for automotive systems is driven by government regulations, vehicle repairability, and customer satisfaction. Several methods have been developed to detect and isolate faults in automotive systems, subsystems and components with special emphasis on those faults that affect the exhaust gas emission levels. Limit checks, model-based, and knowledge-based methods are applied for diagnosing malfunctions in emission control systems. Incipient and partial faults may be hard to detect when using a detection scheme that implements any of the previously mentioned methods individually; the integration of model-based and knowledge-based diagnostic methods may provide a more robust approach. In the present paper, use is made of fuzzy residual evaluation and of a fuzzy expert system to improve the performance of a fault detection method based on a mathematical model of the engine.
Technical Paper

Intelligent Control of Hybrid Vehicles Using Neural Networks and Fuzzy Logic

1998-02-23
981061
This paper discusses the use of intelligent control techniques for the control of a parallel hybrid electric vehicle powertrain. Artificial neural networks and fuzzy logic are used to implement a load leveling strategy. The resulting vehicle control unit, a supervisory controller, coordinates the powertrain components. The presented controller has the ability to adapt to different drivers and driving cycles. This allows a control strategy which includes both fuel-economy and performance modes. The strategy was implemented on the Ohio State University FutureCar.
Technical Paper

A Survey of Automotive Diagnostic Equipment and Procedures

1993-03-01
930769
The introduction of advanced electronic controls in passenger vehicles over the last decade has made traditional diagnostic methods inadequate to satisfy on- and off-board diagnostic needs. Due to the complexity of today's automotive control systems, it is imperative that appropriate diagnostic tools be developed that are capable of satisfying current and projected service and on-board requirements. The performance of available diagnostic and test equipment is still amenable to further improvement, especially as it pertains to the diagnosis of incipient and intermittent faults. It is our contention that significant improvement is possible in these areas. This paper briefly summarizes the evolution of on- and off-board diagnostic tools documented in the published literature, with the aim of giving the reader an understanding of their capabilities and limitations, and it further proposes alternative solutions that may be adopted as a basis for an advanced diagnostic instrument.
Technical Paper

The Effects of Various Engine Control System Malfunctions on Exhaust Emissions Levels During the EPA I/M 240 Cycle

1994-03-01
940448
Ensuring the reliable operation of the emissions control system is a critical factor in complying with increasingly stringent exhaust emissions standards. In spite of significant advances, the performance of available diagnostic and test equipment is still amenable to further improvement, especially as it pertains to the diagnosis of incipient and intermittent faults. This paper presents experimental results pertaining to the diagnosis of complete, partial and intermittent faults in various components of the engine emissions control system. The instrumentation used in the study permitted simultaneous and essentially continuous analysis of the exhaust gases and of engine variables. Tests were conducted using a section of the EPA urban driving cycle (I/M 240), simulated by means of a throttle/dynamometer controller.
Technical Paper

Methods for Internal Combustion Engine Feedback Control During Cold-Start

1995-02-01
950842
Legislation pertaining to automobile emissions has caused an increased focus on the cold-start performance of internal combustion engines. Of particular concern is the period of time before all available sensors become active. Present engine control strategies must rely on methods other than feedback control while these sensors are not active. Without feedback control during this critical period, engine emissions performance is not optimized. These conditions cause difficulty in performing comprehensive cold-start experiments. For these reasons, we have developed several methods for feedback control during cold-start to aid in laboratory investigations of engine emissions phenomena.
Technical Paper

On-Line Estimation of Indicated Torque in IC Engines Using Nonlinear Observers

1995-02-01
950840
An approach to fault diagnosis for internal combustion engines is considered. It is based on the estimation of cylinder indicated torque by means of sliding mode observers. Instead of measuring indicated pressure in cylinders directly, crankshaft speed is measured as the input of observers, which estimate the indicated torque. Several engine models are considered with different levels of complexity. The indicated torque estimation using sliding mode observers is based on the equivalent control method. The estimation technique is validated experimently on a research engine.
Technical Paper

Detection of Partial Misfire in IC Engines Using a Measurement of Crankshaft Angular Velocity

1995-02-01
951070
In recent years considerable interest has been placed on the detection of engine misfire. As part of the California Air Resources Board on-board diagnostics regulations for 1994 model year vehicles, misfire should be monitored continuously by the engine diagnostic system. It is expected that the next generation of on-board diagnostics regulations will demand monitoring of partial misfire as well. Several solutions to the misfire detection problem have been proposed and demonstrated for the detection of complete misfires. However, the performance of these methods in the presence of partial misfire is not altogether clear. The aim of this paper is to evaluate the performance of various misfire detection indices, all based on a measurement of crankshaft angular velocity, in the presence of partial misfire. The proposed algorithms are compared to a standard based on a measurement of indicated pressure.
Technical Paper

The Effect of Engine Misfire on Exhaust Emission Levels in Spark Ignition Engines

1995-02-01
950480
One of the gray areas in the implementation of regulations limiting the generation of pollutants from mobile sources is the actual effectiveness of the exhaust gas emissions control strategy in vehicles that have been in use for some time. While it is possible today to conduct limited diagnostics with the on-board engine computer by performing periodic checks to verify the validity of the signals measured by the on-board sensors, and to measure tailpipe emissions during routine inspection and maintenance, the task of correlating these measurements with each other to provide an on-line, accurate diagnosis of critical malfunctions has thus far proven to be a very challenging task, especially in the case of misfire.
Technical Paper

Integrated Powertrain Diagnostic System: Linking On- and Off-Board Diagnostic Strategies

1996-02-01
960621
A number of automotive diagnostic equipment and procedures have evolved over the last two decades, leading to two generations of on-board diagnostic requirements (OBDI and OBDII), increasing the number of components and systems to be monitored by the diagnostic tools. The goal of On-Board Diagnostic is to alert the driver to the presence of a malfunction of the emission control system, and to identify the location of the problem in order to assist mechanics in properly performing repairs. The aim of this paper is to suggest a methodology for the development of an Integrated Powertrain Diagnostic System (EPDS) that can combine the information supplied by conventional tailpipe inspection programs with onboard diagnostics to provide fast and reliable diagnosis of malfunctions.
Technical Paper

IC Engine Air/Fuel Ratio Feedback Control During Cold Start

1996-02-01
961022
This paper presents a method for air/fuel ratio control using combustion pressure feedback during cold start to be used as an aid in laboratory experiments. The effects of varying air/fuel ratio during cold start are so profound that small differences in air/fuel ratio can create effects that will mask the effects of significant changes in other variables. The ability to control air/fuel ratio is an important aid in comprehensive emission studies during cold start. This work will facilitate future studies of cold start emissions.
Technical Paper

Motorsports in the Engineering Curriculum at The Ohio State University

1996-12-01
962498
This paper describes the background and development of a program focused on motorsports engineering education currently in progress at the Ohio State University (OSU). An interdisciplinary curriculum, with the involvement of various engineering departments, is being proposed for development in an attempt to address some of the engineering education needs of the motorsports industry. The program described in this paper strives to provide engineering students with an interdisciplinary background race engineering, and also provides opportunities for motorsports oriented thesis projects. The paper briefly summarizes the key elements of the curriculum, and describes how the integration of course material from different disciplines with team work on student competition projects, possibly coupled with internships with racing teams, can provide an ideal setting for the education of a new generation of race engineers.
Technical Paper

Design of The Ohio State University Electric Race Car

1996-12-01
962511
The aim of this paper is to document a three year process of product development of the Formula Lightningtm electric race car constructed at the Ohio State University. Today interest in electric vehicles (EV's) is growing, due to the technological advances in recent years, but also in part due to recent legislation which mandates the introduction of ‘zero emission vehicles’ in California before the end of the century. The definition of ‘zero emission vehicle’ is: a vehicle which does not emit any pollutants during operation. Technologically, the only near term vehicle which meets this definition is an EV. One of the most difficult problems of electric racing is that the usable energy in a given set of batteries is not as easily determined as the amount of fuel in a tank. Also, the motor controllers may limit power output as battery voltage drops, further decreasing the amount of usable energy in a battery set.
Technical Paper

The Application of Fuzzy Logic to the Diagnosis of Automotive Systems

1997-02-24
970208
The evolution of the diagnostic equipment for automotive application is the direct effect of the implementation of sophisticated and high technology control systems in the new generation of passenger cars. One of the most challenging issues in automotive diagnostics is the ability to assess, to analyze, and to integrate all the information and data supplied by the vehicle's on-board computer. The data available might be in the form of fault codes or sensors and actuators voltages. Moreover, as environmental regulations get more stringent, knowledge of the concentration of different species emitted from the tailpipe during the inspection and maintenance programs can become of great importance for an integrated powertrain diagnostic system. A knowledge-based diagnostic tool is one of the approaches that can be adopted to carry out the challenging task of detecting and diagnosing faults related to the emissions control system in an automobile.
X