Refine Your Search

Search Results

Viewing 1 to 8 of 8
Technical Paper

The Integral Flex-Vehicle Mixture Control of Alcohol-Based Bio-Fuels - A New Challenge for Fuel-Atomizer Optimization

2008-04-14
2008-01-0437
The paper presents the main reasons for the increasing market share of vehicles with the capacity to run on random bio fuel blends. It describes the philosophy and basic layout of current integral flex mixture preparation systems. The paper demonstrates the necessity to introduce a series of new high-performance analysis tools for further improvement of the mixture preparation system and in particular the fuel injector performance. The paper continues with a discussion of the basic structure of the interactive Virtual Engine Model approach applied to fuel injector atomizer optimization. Test results obtained by application of the new tools to two different series production flex engines are presented. The impact of the improved spray formation capability of the optimized fuel injector atomizers is explained and experimental vehicle FTP-cycle data are reported and discussed.
Technical Paper

Analysis of the Capabilities of the new innovative Ethanol Low-Temperature Mixture Preparation Device ECS.

2008-10-07
2008-36-0080
The paper presents the main reasons for the increasing market share of vehicles with the capacity to run on random bio fuel blends. It explains the reason for which a single fuel supply system is mandatory in modern flex vehicles, even for cold start by pure ethanol fuelling The paper continues with an analytic research for the most appropriate device location and a detailed description of 3 suggested device layouts. The paper concludes by a presentation of a series of data obtained by real-time vehicle experiments at low ambient temperature conditions.
Technical Paper

Introduction of Virtual Spray Vessel (VSV) simulation approach to improve the optimization level of mass-produced 3rd generation fuel injectors for SFS-Flex fuel systems.

2010-10-06
2010-36-0137
The success obtained by use of Virtual Engine Modeling (VEM) in the design and development areas of fuel injectors generated a lot of interest from production and quality engineers to dispose of a similar tool related to spray vessel measurements. To respond to stringent PL6/EURO5 requirements it was decided to develop a Virtual Spray Vessel (VSV) tool capable of predicting spray patters and perform droplet diameter analysis comparable to Phase Doppler Analysis (PDA) results. The paper describes the analogies between VEM and VSV modeling, the specific new numerical approaches to obtain spatial spray data comparable to conventional mechanical measurement techniques and to perform droplet diameter analysis comparable to PDA data. The paper concludes with a series of comparisons of simulated and experimental data.
Technical Paper

Developments in the Use of Multi-Purpose Numerical Simulation Tools to Optimize Combustion Control Parameters for the 2nd Generation of Lean Burn Stratified GDI Engines

2001-03-05
2001-01-0967
The first part of the paper gives an overview of the current results obtained with the first-generation of GDI-powered vehicles launched on the European market. In view of the rather limited success in fuel consumption gain the second-generation of very lean stratified layouts has begun, but this process requires the development and application of new high-level analysis tools. A possible high performance approach is the multi-purpose use of 3-D numerical simulation both in the development and the engine control strategy calibration phases. The development of a small 1.6 liter lean stratified engine project was chosen to demonstrate the dual application capability of the NCF-3D simulation tool. The paper continues with a description of the engine application frame, the basic features of the NCF-3D simulation tool and the latest enhancements made to combustion and fuel composition models within the software frame.
Technical Paper

Study of the Benefits and Drawbacks of a Substantial Increase of Rail-Pressure in GDI-Injector Assemblies

2002-03-04
2002-01-1132
In the present paper are examined the consequences of a substantial rise in the injection pressure for Gasoline Direct Injection (GDI) injector assemblies. The paper presents a comparative study of the spray behavior of two different injector nozzle layouts submitted to current 10 Mpa rail-pressure as well as to a 30 Mpa injection pressure. To evaluate the differences in the fundamental physical spray parameters are used several specially developed optical visualization techniques, which enable phase-Doppler, PIV, Laser-sheet and high-speed recordings of dense high pressure fuel sprays. A recently developed injector actuator and the necessary modifications to existing high-pressure pumps to reach a 30 MPa pressure level in the fuel system are presented. The change in basic spray parameters (time-resolved droplet distribution and spray momentum) caused by the rail-pressure rise is examined.
Technical Paper

Study of the Impact on the Combustion Process of Injector Nozzle Layout creating Enhanced Secondary Spray Break-up

2003-03-03
2003-01-0706
The paper presents a study of a key-element in the mixture preparation process. A typical common-rail (CR) high-pressure fuel injector was fitted with a prototype injector nozzle with atomizer bores of a particular conical layout. It is demonstrated within certain layout limits, that a considerable enhancement can be obtained for the secondary break-up of the hard-core fluid sprays produced by the nozzle. The impact on the combustion process is examined in terms of pressure and heat release as well as of the engine-out pollutant emission. The results are compared to those of an earlier developed CR high-pressure injector nozzle. The atomization behavior of the prototype nozzle is illustrated through experimental results in terms of engine-out emissions from a 1.3-liter turbo-charged passenger car diesel engine. The detailed spray behavior is visualized on a component test rig by use of specially developed optical visualization techniques.
Technical Paper

New Developments in Fuel Injector Atomizer Layouts for Port Fuel Injection Applications to Meet PL6 and ULEV Requirements

2011-10-04
2011-36-0058
The paper presents the background research on the physics of the droplet coalescence phenomena carried out by an interactive usage of high-level 3-D numerical simulation tools and high-level optical visualization and measurement techniques. The presentation continues with the description of a new injector atomizer plate layout, which enables a physical coalescence control of the droplet population within the entire fuel spray. Finally are presented examples of the impact on exhaust emissions of the introduction the new atomizer plate with coalescence control by engine test bed experiments (steady state low load conditions) and vehicle tests (first cold part of the FTP-cycle).
Technical Paper

Reduction of Spray Momentum for GDI High-Pressure Injectors - A Necessary Step to Accomplish Series Production of Super-Charged DI-Engines

2005-04-11
2005-01-0104
The first part of the present paper describes the means by which the spray momentum can be decreased. The objective can be obtained either by injector-internal geometrical design changes, which very often lead to a highly non-uniform spray density/droplet distribution or by a new injector-external process, called the colliding jet (CJ) approach. The paper continues with a detailed description of the physics of the controlled secondary breakup process provided by the CJ-approach, which enables a very uniform density/droplet distribution on the downstream side of the collision zone as well as an approximately 40 % decrease in spray penetration depth. The knowledge of the physics of the CJ-approach enables the introduction of a new spray model in the 3-D numerical simulation code NCF-3D.
X