Refine Your Search

Topic

Search Results

Viewing 1 to 12 of 12
Standard

Extraordinary and Special Purpose Landing Gear Systems

2006-05-19
HISTORICAL
AIR4846
A landing gear system comprises the most compelling assembly of engineering skills. Its importance to the successful design of an aircraft can be favorably compared with that of the aircraft's wings and engines. A landing gear system consists of several different engineering disciplines, and is continually in the public eye especially with regard to safety. The primary objective of AIR4846 is to present a record of a variety of interesting gears, gear/aircraft systems and patents, and to discuss wherever possible the lessons learned, and the reasons for the design. Thus, the document is not only a historical account, but a means of recording technical knowledge for the practical benefit of future landing gear designers. Commendable efforts have been made over the years by several individuals to make such recordings, and AIR4846 will make continual reference to them. This applies to all books, papers, or specifications that have the approval of the SAE A-5 Committee.
Standard

Extraordinary and Special Purpose Landing Gear Systems

2012-10-03
CURRENT
AIR4846A
A landing gear system comprises the most compelling assembly of engineering skills. Its importance to the successful design of an aircraft can be favorably compared with that of the aircraft's wings and engines. A landing gear system consists of several different engineering disciplines, and is continually in the public eye especially with regard to safety. The primary objective of AIR4846 is to present a record of a variety of interesting gears, gear/aircraft systems and patents, and to discuss wherever possible the lessons learned, and the reasons for the design. Thus, the document is not only a historical account, but a means of recording technical knowledge for the practical benefit of future landing gear designers. Commendable efforts have been made over the years by several individuals to make such recordings, and AIR4846 will make continual reference to them. This applies to all books, papers, or specifications that have the approval of the SAE A-5 Committee.
Standard

Guide for Installation of Electrical Wire and Cable on Aircraft Landing Gear

2021-08-09
CURRENT
AIR4004A
Recent field experience has indicated significant problems with some types of wire and cables as routed on aircraft landing gear. This SAE Aerospace Information Report (AIR) is intended to identify environmental concerns the designer should consider, materials that appear to be most suitable for use in these areas, routing, clamping, and other protection techniques that are appropriate in these applications. In recent years aircraft certification regulatory agencies introduced new regulations regarding Electrical Wiring Interconnection Systems (EWIS) to further enhance safety of the associated systems and aircraft overall.
Standard

Gland Design: Scraper, Landing Gear, Installation

2021-02-03
HISTORICAL
AS4052B
This SAE Aerospace Standard (AS) covers an alternate gland design for the installation of scraper/wiper rings in the lower end of landing gear shock struts for the purpose of contaminant exclusion. The defined scraper gland covered by this document, as shown in Table 1, is a variant of AS4716, the accepted gland standard for MS28775, O-ring packing seals. Piston rod diameters, gland internal diameters, groove sidewall angles and the surface finish are all defined by AS4716, but the gland outer retaining wall diameter is changed. The traditional scraper design installed into the glands detailed in Table 1 typically utilize components made from urethane or nitrile materials. These scraper designs, while still acceptable, must be reviewed in consideration to deicing, cleaners and disinfectant fluids applied to or in contact with the landing gear, as the materials of construction for the installed scrapers may not be compatible to these fluids.
Standard

External Hydraulic Fluid Leakage Definition for Landing Gear Shock Absorbers

2023-11-16
CURRENT
ARP6408
The purpose of this SAE Aerospace Recommended Practice (ARP) is to provide a practical definition of external hydraulic fluid leakage exhibited by landing gear shock absorbers/struts. The definition will outline normal (acceptable weepage) and excessive leakage (unacceptable leakage) of shock absorbers/struts that is measurable. The definition of leakage is applicable to new gear assemblies, refurbished/remanufactured (overhauled) shock absorbers/struts, leakage of shock absorbers/struts encountered during acceptance flights, newly delivered and in-service aircraft. This ARP is intended to provide guidelines for acceptable leakage of landing gear shock absorbers/struts between the ambient temperatures of -65 °F (-54 °C) and 130 °F (54 °C) and to outline the procedure for measuring such leakage. The specific limits that are applied to any particular aircraft shall be adjusted by the aircraft manufacturer before inclusion in the applicable maintenance manual.
Standard

Landing Gear Switch Selection Criteria

2022-07-06
CURRENT
AIR5024A
The scope of this document is to discuss the differences between electromechanical and proximity position sensing devices (sensor or switch) when used on landing gear. It also contains information which may be helpful when applying either type of technology after the selection has been made. The purpose is to help the designer make better choices when selecting a position-sensing device. Once that choice has been made, this document includes information to improve the reliability of new or current designs. It is not intended to replace recommendations from sensor manufacturers or actual experience, but to provide a set of general guidelines based on historic infromation of what is being used.
Standard

Landing Gear Switch Selection Criteria

2021-02-03
HISTORICAL
AIR5024
The scope of this document is to discuss the differences between electromechanical and proximity position sensing devices when used on landing gears. It also contains information, which may be helpful, when applying either type of technology after the selection has been made. The purpose is to help the designer make better choices when selecting a position-sensing device. Once that choice has been made, this document includes information to improve the reliability of new or current designs. It is not intended to replace recommendations from sensor manufacturers or actual experience, but to provide a set of general guidelines.
Standard

Design, Development and Test Criteria - Solid State Proximity Switches/Systems for Landing Gear Applications

2001-10-01
HISTORICAL
AIR1810B
This document will examine the more important considerations relative to the utilization of "one piece", or integral electronics proximity switches, and "two piece", or separate sensor and electronics proximity switches, for applications on aircraft landing gear. In general, the recommendations included are applicable for other demanding aircraft sensor installations where the environment is equally severe.
Standard

DESIGN, DEVELOPMENT AND TEST CRITERIA - SOLID STATE PROXIMITY SWITCHES/SYSTEMS FOR LANDING GEAR APPLICATIONS

1991-06-01
HISTORICAL
AIR1810A
This document will examine the more important considerations relative to the utilization of "one piece", or integral electronics proximity switches, and "two piece", or separate sensor and electronics proximity switches, for applications on aircraft landing gear. In general, the recommendations included are applicable for other demanding aircraft sensor installations where the environment is equally severe.
Standard

Landing Gear Shock Strut Hydraulic Fluid

2016-05-06
HISTORICAL
AIR5358A
This document describes fluids used in landing gear shock struts with extreme pressure and antiwear additives that have been added for improved lubrication.
X