Refine Your Search

Search Results

Viewing 1 to 4 of 4
Technical Paper

Empirical Testing of Vehicular Rotational Motion

2012-04-16
2012-01-0602
Vehicles often rotate during traffic collisions due to impact forces or excessive steering maneuvers. In analyzing these situations, accident reconstructionists need to apply accurate deceleration rates for vehicles that are both rotating and translating to a final resting position. Determining a proper rate of deceleration is a challenging but critical step in calculating energy or momentum-based solutions for analytical purposes. In this research, multiple empirical tests were performed using an instrumented vehicle that was subjected to induced rotational maneuvers. A Ford Crown Victoria passenger car was equipped with a modified brake system where selected wheels could be isolated. The tests were performed on a dry asphalt surface at speeds of approximately 50 mph. In each of the tests, the vehicle rotated approximately 180 degrees with the wheels on one side being completely locked.
Technical Paper

An Examination of Diagnostic Event Data in Bendix Antilock Brake System Electronic Control Units

2012-04-16
2012-01-0994
The use of Heavy Vehicle Event Data Recorders (HVEDRs) in collision analysis has been recognized in past research. Numerous publications have been presented illustrating data accuracy both in normal operating conditions as well as under emergency braking conditions [1,2,3]. To date, the bulk of this research has focused on HVEDRs incorporated into the Electronic Control Modules (ECMs) employed by various manufacturers to monitor and control engine operation. Oftentimes, data associated with engine diagnostic faults include vehicle speed and driver input parameters that are later used in a collision analysis. In addition to the ECM, other electronic control systems may store data associated with fault conditions. For example, the Antilock Braking System (ABS) Electronic Control Unit (ECU), which is tasked with electronically controlling brake application air pressure to reduce wheel lockup, is such a unit that has the ability to store diagnostic information.
Technical Paper

Using NFPA Compliant Fire Apparatus Vehicle Data Recorders for Collision Investigation - Weldon Type 6444

2015-04-14
2015-01-1446
The use of Heavy Vehicle Event Data Recorders (HVEDRs) in collision analysis has been well recognized in past research. Numerous publications have been presented illustrating data accuracy both in normal operating conditions as well as under emergency braking conditions. These data recording devices are generally incorporated into Electronic Control Modules (ECMs) for engines or Electronic Control Units (ECUs) for other vehicular components such as the Anti-Lock Brake System. Other research has looked at after-market recorders, including publically-available Global Positioning System (GPS) devices and fleet management tools such as Qualcomm. In 2009, the National Fire Protection Association (NFPA) incorporated a Vehicle Data Recorder (VDR) component into their Standard for Automotive Fire Apparatus. The purpose of this was to “…capture data that can be used to promote safe driving and riding practices.” The Standard requires minimum data elements, recording times, and sample rates.
Journal Article

Dry Pavement Friction Reductions Due to Sanding Applications

2012-04-16
2012-01-0603
The importance of friction applications in the field of collision reconstruction is well recognized in published research. However, tire-road frictional drag values (μ-values) are partially dependent on the surface on which the tire is travelling. One such variable may be the intentional presence of sand upon a particular roadway. Sand is sometimes applied to dry pavement in an effort to absorb liquid debris that may have been accidentally spilled onto the surface. Once the sand has been applied, it may be left for a measureable time until the fluid has been absorbed. If a collision were to occur on that particular surface while the sand is in place, it may be difficult to determine an appropriate μ-value for the given scenario. In an attempt to examine the extent of friction reduction for both a passenger vehicle and a commercial truck on such a surface, testing was performed in a like condition.
X