Refine Your Search

Search Results

Viewing 1 to 3 of 3
Technical Paper

Automated Limit Space Characterisation & Mapping

2004-03-08
2004-01-1616
More stringent legislative guidelines on emissions and fuel economy have led to an increased number of engine parameters to be optimised. Steady state engine mapping to produce an empirical engine model remains a fundamental step in this optimisation process. Recently statistical techniques such as design of experiments have been introduced to improve the efficiency of this modeling phase. Before undertaking an experimental design it is first necessary to determine the permissible envelope of the various design parameters. The importance of this limit space is two fold, firstly to ensure that the engine is not operated in regions, which may cause damage to it, and secondly so that subsequent experimentation yields test data wholly valid for the subsequent engine model. Currently this limit space is defined in a largely manual process, requiring expert input many times in the test and characterization process.
Technical Paper

Investigation of ‘Sweep’ Mapping Approach on Engine Testbed

2002-03-04
2002-01-0615
Steady state mapping is fundamental to optimizing IC engine operation. Engine variables are set, a predefined settling time elapses, and then engine data are logged. This is an accurate but time consuming approach to engine testing. In contrast the sweep method seeks to speed up data capture by continuously moving the engine through its operating envelope without dwelling. This is facilitated by the enhanced capability of modern test rig control systems. The purpose of this work is to compare the accuracy and repeatability of the sweep approach under experimental conditions, with that of steady state testing. Limiting factors for the accuracy of the sweep approach fall into two categories. Firstly on the instrumentation side - transducers have a characteristic settling time. Secondly on the engine side - thermal and mechanical inertias will mean that instantaneous measurements of engine parameters differ from the steady state values.
Technical Paper

Review of Turbocharger Mapping and 1D Modelling Inaccuracies with Specific Focus on Two-Stag Systems

2015-09-06
2015-24-2523
The adoption of two stage serial turbochargers in combination with internal combustion engines can improve the overall efficiency of powertrain systems. In conjunction with the increase of engine volumetric efficiency, two stage boosting technologies are capable of improving torque and pedal response of small displacement engines. In two stage sequential systems, high pressure (HP) and low pressure (LP) turbochargers are packaged in a way that the exhaust gases access the LP turbine after exiting the HP turbine. On the induction side, fresh air is compressed sequentially by LP and HP compressors. The former is able to deliver elevated pressure ratios, but it is not able to highly compressor low flow rates of air. The latter turbo-machine can increase charge pressure at lower mass air flow and be by-passed at high rates of air flow.
X