Refine Your Search

Search Results

Viewing 1 to 2 of 2
Technical Paper

Optimisation of Process Parameters of EDM on Al6082/SiC Metal Matrix Composite

2016-04-05
2016-01-0533
In the present investigation AA6082/ SiC MMC composite is fabricated using electromagnetic stir casting technique. Silicon carbide (SiC) of 40 μm size is used as reinforcement and is varied by weight percentage as 0%, 2.5%, 5%, 7.5%, 10% in alloy AA6082. The microstructure of the fabricated composite is studied by scanning electron microscopy (SEM) which shows even distribution of the reinforcement. The mechanical properties improve with SiCp till 7.5%, after that the properties decreases which may be due to presence of porosity during the composite manufacturing. A comparative study of mechanical properties such as tensile strength, hardness and toughness has been done between the composite and base aluminium alloy. After the comparative study it was found that the composite having AA6082/SiC-92.5%/7.5% is best suited. So, it is used for optimization of Electrical Discharge Machining (EDM) process parameters using Taguchi’s design of experiment.
Technical Paper

Experimental Investigation of Wear and Frictional Properties of A356/SiC Metal Matrix Composite

2017-10-13
2017-01-5012
The present work deals with the fabrication and tribological testing of an aluminium/SiC composite. Fabrication was done using two techniques; mechanical stir casting and electromagnetic stir casting. Metal matrix composite (MMC) was fabricated using aluminium as a matrix and SiC as reinforcement in varying weight percentages. The wear and frictional properties of the MMC were studied by performing dry sliding wear test using a pin-on-disc wear tester for both types of samples. Wear rate retards with the increase the percentage of reinforcement whereas it improves with the addition of normal force. At same time frictional coefficient upsurges by increasing the normal force and percentage of reinforcement. Increasing percentage of reinforcement and using electromagnetic stir casting process obtained the higher frictional coefficient and lower wear rate.
X