Refine Your Search

Search Results

Viewing 1 to 3 of 3
Journal Article

Fast Oxygen Based Transient Diesel Engine Operation

2009-04-20
2009-01-0622
Due to the advancements in passenger car Diesel engine design, the contribution of transient emission spikes has become an important fraction of the total emissions during the standardized test cycles, hence the interest of this work on dynamical engine operation, in particular on the improvement of NOX and PM emissions. This paper proposes to use a UEGO sensor (universal exhaust gas oxygen sensor) in the upstream of the turbine in combination with a Kalman filter to estimate the target quantities, namely in-cylinder oxygen concentration before and after combustion. This information is used to define the fuel injection as well as the values of the air path actuators. Test bench measurements with a production Diesel engine are presented, where the oxygen based approach is compared to the standard calibration during a fast load increase. It is shown that the torque response could be maintained while NOX as well as PM emission peaks were reduced significantly.
Technical Paper

Optimization of the transient Diesel engine operation

2009-09-13
2009-24-0113
Transient emission peaks have become an important fraction of the total emissions during the standardized test cycles for passenger car Diesel engines. This paper is concerned with their reduction, in particular for nitric oxides (NOx) and particulate matter (PM) emissions, by online optimization. It is based on a former work [1] in which alternative target quantities for engine control were proposed, namely in-cylinder oxygen concentrations before (O2,BC) and after combustion (O2,AC). A generic nonlinear optimization is applied to provide a systematic determination for the optimal trajectories of these oxygen target quantities during a transient torque maneuver. The proposed method was implemented on a dynamic engine test bed using a production passenger car Diesel engine for the objective function evaluation. Torque response could be maintained unchanged while NOx as well as PM emission peaks were reduced significantly.
Journal Article

Simplified Calculation of Chemical Equilibrium and Thermodynamic Properties for Diesel Combustion

2011-09-11
2011-24-0020
Computation of combustion, in particular of emissions over crank angle, relies on chemical oriented models. In some cases, chemical equilibrium can be assumed, as chemical reaction time scales tend to be fast compared to the crank rotation, so the rather complex reaction kinetics can be neglected. For engine process calculation based on the measured cylinder pressure chemical equilibrium concentrations are needed for every crank angle or calculation time step. On the one hand the equilibrium concentrations are necessary for estimating the thermodynamic properties of the working gas (internal energy and specific gas constant) which are needed for deriving the energy release (burn rate) and on the other hand the obtained concentrations are inputs for crank angle based soot and nitric oxygen emission models which depends also on the engine process calculation results.
X