Refine Your Search

Search Results

Viewing 1 to 6 of 6
Technical Paper

Extinction and Chemiluminescence Measurements in CR DI Diesel Engine Operating in HCCI Mode

2007-04-16
2007-01-0192
Homogeneous Charge Compression Ignition (HCCI) combustion was applied to a transparent diesel engine equipped with high pressure Common Rail (CR) injection system. By means of CR system the quantity of fuel was split into five injections per cycle. Combined measurements, based on digital imaging and spectroscopic techniques, were applied to follow the evolution of HCCI combustion process with high temporal and spatial resolution. Digital imaging allowed to analyse injection and combustion phases. Broadband ultraviolet - visible extinction spectroscopy (BUVES) and flame emission measurements were carried out to evaluate the presence of radicals and species such as HCO, OH, CH, and CO. In particular, BUVES measurements were performed to follow fuel oxidation, and pollutant formation and oxidation. During injection and cool combustion, bands of aromatic compounds and alkyl peroxides, indicating fuel decomposition, and hydrogen peroxides were detected.
Technical Paper

Extinction and Chemiluminescence Measurements of HCCI Mode in Diesel Engine Operating with Late Injection

2008-04-14
2008-01-0027
Nowadays HCCI combustion process is revealing the most useful technique for reducing pollutant emission from internal combustion engines. In the present paper, HCCI combustion was realized by means of single late injection at high pressure and heavy EGR, up to 50%. A transparent Direct Injection (DI) diesel engine equipped with high pressure Common Rail (CR) injection system was used. The engine was fed with commercial diesel fuel and ran in continuous mode. Digital imaging and spectroscopic techniques, with high temporal and spatial resolution, were applied to study the low temperature combustion process. Injection and combustion phases were analysed by digital imaging. Mixing process, autoignition and pollutants formation were investigated by Broadband Ultraviolet - Visible Extinction Spectroscopy (BUVES) and flame emission measurements. Radicals and species such as OH, CH and CO were detected in the combustion chamber.
Technical Paper

N-Heptane Ignition Delay Time Model for Two Stage Combustion Process

2017-09-04
2017-24-0071
Ignition delay time is key to any hydrocarbon combustion process. In that sense, this parameter has to be known accurately, and especially for internal combustion engine applications. Combustion timing is one of the most important factors influencing overall engine performances like power output, combustion efficiency, emissions, in-cylinder peak pressure, etc. In the case of low temperature combustion (LTC) mode (e.g. HCCI mode), this parameter is controlled by chemical kinetics. In this paper, an ignition delay time model including 7 direct reactions and 13 species coupled with a temperature criterion is described. This mechanism has been obtained from the previous 26-step n-heptane reduced mechanism, focusing on the low temperature region which is the most important phase during the two stage combustion process. The complete model works with 7 reactions until the critical temperature is reached, leading to the detection of the ignition delay time value.
Technical Paper

Dynamic Analysis of Emission Spectra in HCCI Combustion

2013-09-08
2013-24-0042
This work reports on the application of spectroscopic measurements coupled with data processing techniques in order to study, in terms of spectral emissions, the dynamic of the HCCI (Homogeneous charge compression ignition) combustion that occurs inside the combustion chamber of an optically accessible direct injection Diesel engine. A pre-processing of the recorded spectra is required for a correct analysis. The procedure of pre-processing consists of two main steps, that is: noise filtering with a technique based on the POD (Proper Orthogonal Decomposition); estimate and subtraction of the baseline. The analysis of the dynamics of the recorded spectra was carried out by the estimates of the synchronous and asynchronous 2D correlation spectra.
Technical Paper

Ultra-High Speed Fuel Tracer PLIF Imaging in a Heavy-Duty Optical PPC Engine

2018-04-03
2018-01-0904
In order to meet the requirements in the stringent emission regulations, more and more research work has been focused on homogeneous charge compression ignition (HCCI) and partially premixed combustion (PPC) or partially premixed compression ignition (PCCI) as they have the potential to produce low NOx and soot emissions without adverse effects on engine efficiency. The mixture formation and charge stratification influence the combustion behavior and emissions for PPC/PCCI, significantly. An ultra-high speed burst-mode laser is used to capture the mixture formation process from the start of injection until several CADs after the start of combustion in a single cycle. To the authors’ best knowledge, this is the first time that such a high temporal resolution, i.e. 0.2 CAD, PLIF could be accomplished for imaging of the in-cylinder mixing process. The capability of resolving single cycles allows for the influence of cycle-to-cycle variations to be eliminated.
Technical Paper

A Mixing Timescale Model for PDF Simulations of LTC Combustion Process in Internal Combustion Engines

2019-09-09
2019-24-0113
Transported probability density function (PDF) methods are currently being pursued as a viable approach to model the effects of turbulent mixing and mixture stratification, especially for new alternative combustion modes as for example Homogeneous Charge Compression ignition (HCCI) which is one of the advanced low temperature combustion (LTC) concepts. Recently, they have been applied to simple engine configurations to demonstrate the importance of accurate accounting for turbulence/chemistry interactions. PDF methods can explicitly account for the turbulent fluctuations in species composition and temperature relative to mean value. The choice of the mixing model is an important aspect of PDF approach. Different mixing models can be found in the literature, the most popular is the IEM model (Interaction by Exchange with the Mean). This model is very similar to the LMSE model (Linear Mean Square Estimation).
X