Refine Your Search

Search Results

Viewing 1 to 5 of 5
Technical Paper

Effects of Training on Learning and Use of an Adaptive Cruise Control System

2020-04-14
2020-01-1033
This study examined the effects of formalized training on driver behavior and understanding of an adaptive cruise control (ACC) system with drivers experienced with ACC. Sixteen participants drove an ACC-equipped vehicle while following a lead vehicle around a test track. Participants completed three laps, each involving different lead vehicle behaviors, such as making a lane change or stopping at a red light, that test the limitations and capabilities of ACC (i.e., boundary conditions) of the subject ACC system. Immediately before driving, half of the participants watched a training video describing how the ACC system would respond to these lead vehicle behaviors. Participants’ knowledge of the ACC system limitations was assessed by a pre- and post-test questionnaire, and participants’ interactions with the ACC system - including braking behavior, other pedal movements, and actuation of ACC via steering wheel controls - were recorded by video cameras.
Technical Paper

Lane-Keeping Behavior and Cognitive Load with Use of Lane Departure Warning

2017-03-28
2017-01-1407
Lane Departure Warning (LDW) systems, along with other types of Advanced Driver Assistance Systems (ADAS), are becoming more common in passenger vehicles, with the general aim of improving driver safety through automation of various aspects of the driving task. Drivers have generally reported satisfaction with ADAS with the exception of LDW systems, which are often rated poorly or even deactivated by drivers. One potential contributor to this negative response may be an increase in the cognitive load associated with lane-keeping when LDW is in use. The present study sought to examine the relationship between LDW, lane-keeping behavior, and concurrent cognitive load, as measured by performance on a secondary task. Participants drove a vehicle equipped with LDW in a demarcated lane on a closed-course test track with and without the LDW system in use over multiple sessions.
Technical Paper

Variability in Circumstances Underlying Pedal Errors: An Investigation Using the National Motor Vehicle Crash Causation Survey

2018-04-03
2018-01-0493
Pedal errors have been widely reported as a leading cause of unintended acceleration (UA) incidents for several decades. Many governmental and scientific studies have attempted to characterize the rate of pedal errors leading to UA incidents using data from the North Carolina Crash Database. These data, however, are limited for various reasons, including the absence of an in-depth investigation of causal factors contributing to the accident. To further examine the rate of UA incidents related to pedal error, we utilized the National Motor Vehicle Crash Causation Survey (NMVCCS), a nationally representative sample of 5,471 crashes that occurred between 2005 and 2007. Using a targeted keyword search, we identified 48 potential pedal errors (30 driver-admitted), providing a national estimate of 17,919 pedal errors. We then investigated accident characteristics across these specific cases, including demographics of the drivers, vehicle characteristics, and pre-crash critical events.
Technical Paper

Driver Reactions in a Vehicle with Collision Warning and Mitigation Technology

2015-04-14
2015-01-1411
Advanced Driver Assistive System (ADAS) technologies have been introduced as the automotive industry moves towards autonomous driving. One ADAS technology with the potential for substantial safety benefits is forward collision warning and mitigation (FCWM), which is designed to warn drivers of imminent front-end collisions, potentiate driver braking responses, and apply the vehicle's brakes autonomously. Although the proliferation of FCWM technologies can, in many ways, mitigate the necessity of a timely braking response by a driver in an emergency situation, how these systems affect a driver's overall ability to safely, efficiently, and comfortably operate a motor vehicle remains unclear. Exponent conducted a closed-course evaluation of drivers' reactions to an imminent forward collision event while driving an FCWM-equipped vehicle, either with or without a secondary task administered through a hands-free cell phone.
Technical Paper

Accelerator-to-Brake Pedal Transition Movements during On-Road Stopping in an Older Population

2017-03-28
2017-01-1396
Unintended acceleration events due to pedal misapplication have been shown to occur more frequently in older vs. younger drivers. While such occurrences are well documented, the nature of these movement errors is not well-characterized in common pedal error scenarios: namely, on-road, non-emergency stopping or slowing maneuvers. It is commonly assumed that drivers move in a ballistic or “direct hit” trajectory from the accelerator to the brake pedal. However, recent simulator studies show that drivers do not always move directly between pedals, with older drivers displaying more variable foot trajectories than younger drivers. Our study investigated pedal movement trajectories in older drivers ages 67.9 ± 5.2 years (7 males, 8 females) during on-road driving in response to variable traffic light conditions. Three different sedans and a pick-up truck were utilized.
X