Refine Your Search

Topic

Search Results

Standard

Icing Tunnel Tests for Thermal Ice Protection Systems

2010-05-11
WIP
AIR6440
This document is intended to provide guidance for conducting icing tunnel tests for assessment and design of thermal anti-ice systems for wing, stabilizers and engine inlets (considering both hot air and electrical power as a heat source).
Standard

Ice Shape Test Matrix Development for Unprotected Surfaces

2010-10-19
WIP
ARP6455
This document is intended to provide guidance for development of a test matrix for generation of ice shapes on unprotected surfaces. It introduces the reader to scaling of flight conditions to capabilities of typical icing tunnels and provides an example of the process.
Standard

Aircraft Inflight Icing Terminology

2002-09-17
HISTORICAL
AIR5504
This SAE Aerospace Information Report (AIR) provides definitions for terms commonly used in aircraft inflight icing system design and analysis, research, and operations. Some general thermodynamic terms are included that are frequently used in icing analysis, but this document is not meant to be an inclusive list of such terms.
Standard

Aircraft Inflight Icing Terminology

2009-11-24
CURRENT
AIR5504A
This SAE Aerospace Information Report (AIR) provides definitions for terms commonly used in aircraft inflight icing system design and analysis, research, and operations. Some general thermodynamic terms are included that are frequently used in icing analysis, but this document is not meant to be an inclusive list of such terms. The purpose of this document is to provide an assemblage of definitions for terms commonly used in aircraft icing. Over time, the field of aircraft icing has evolved a set of terms that are sometimes used in different ways and have different meanings. This document is a compendium of icing terms and their associated definitions. The SAE does not endorse or recommend any particular definition given in this report.
Standard

Aircraft Inflight Icing Terminology

2018-09-27
WIP
ARP5624A
This SAE Aerospace Recommended Practice (ARP) provides recommended definitions for terms commonly used in aircraft inflight icing system design and analysis, research, and operations. Some general thermodynamic terms are included that are frequently used in icing analysis, but this document is not meant to be an inclusive list of such terms.
Standard

Aircraft Inflight Icing Terminology

2013-04-23
CURRENT
ARP5624
This SAE Aerospace Recommended Practice (ARP) provides recommended definitions for terms commonly used in aircraft inflight icing system design and analysis, research, and operations. Some general thermodynamic terms are included that are frequently used in icing analysis, but this document is not meant to be an inclusive list of such terms.
Standard

ICING TECHNOLOGY BIBLIOGRAPHY

1996-07-01
HISTORICAL
AIR4015A
This Icing Technology Bibliography is a compendium of references from the open literature, including both national and foreign sources. Due to the generality of the subject, and the difficulty of fully investigating every available source, the present Bibliography is not intended to be complete. However, it will be updated every 18 months by the SAE AC-9C Aircraft Icing Technology Subcommittee. Any suggestions in terms of additional references, sources, and corrections should be referred to the Icing Technology Bibliography Panel of the SAE AC-9C Aircraft Icing Technology Subcommittee.
Standard

Icing Technology Bibliography

2013-03-15
CURRENT
AIR4015D
This Icing Technology Bibliography is a compendium of references from the open literature that were published prior to the original 1987 issuance of the AIR, including both national and foreign sources. Due to the generality of the subject, and the difficulty of fully investigating every available source, the Bibliography in this document is not intended to be complete.
Standard

Icing Technology Bibliography

2007-04-11
HISTORICAL
AIR4015B
This Icing Technology Bibliography is a compendium of references from the open literature that were published prior to the original 1987 issuance of the AIR, including both national and foreign sources. Due to the generality of the subject, and the difficulty of fully investigating every available source, the Bibliography in this document is not intended to be complete.
Standard

Deicing System, Pneumatic Boot, Aircraft, General Specification for

2001-07-01
CURRENT
AS8804A
This specification covers the general requirements for pneumatic deicing systems for wings, empennages, radomes, radio masts, air induction system entrance cones, and ducts of aircraft. Deicing boots shall be of one type, operating at 15 to 22 psig pressure.
Standard

Deicing System, Pneumatic Boot, Aircraft, General Specification For

1997-09-01
HISTORICAL
AS8804
This specification covers the general requirements for pneumatic deicing systems for wings, empennages, radomes, radio masts, air induction system entrance cones, and ducts of aircraft. Deicing boots shall be of one type, operating at 15 to 22 psig pressure.
Standard

Summary of Icing Simulation Test Facilities

1999-07-01
HISTORICAL
AIR5320
This SAE Aerospace Information Report (AIR) contains information on most of the major icing simulation ground facilities. An effort was made to obtain data from as many facilities as possible over a two year time period. The data in this document represents the state of the facilities in calendar year 1996. Facilities are constantly changing and upgrading and, therefore, some facility specifications may change during the life of this report. Of the 27 facilities described in this report, the primary use is split with approximately half for engine testing and half for wind tunnel testing. The facilities are limited to ground facilities and, therefore, icing tankers have not been included.
Standard

Summary of Icing Simulation Test Facilities

2015-09-25
CURRENT
AIR5320A
This SAE Aerospace Information Report (AIR) contains information on most of the major icing simulation ground facilities. An effort was made to obtain data from as many facilities as possible over a two year time period. The data in this document represents the state of the facilities in calendar year 1996. Facilities are constantly changing and upgrading and, therefore, some facility specifications may change during the life of this report. Of the 27 facilities described in this report, the primary use is split with approximately half for engine testing and half for wind tunnel testing. The facilities are limited to ground facilities and, therefore, icing tankers have not been included.
Standard

AIRCRAFT ICE DETECTORS AND ICING RATE MEASURING INSTRUMENTS

1995-04-01
HISTORICAL
AIR4367
This document provides information regarding ice detector technology, and design and operating requirements. Icing rate information is included where applicable. The primary application is associated with ice forming on the leading edges of airfoils and inlets with significant forward velocities. Information related to detection of ice at static conditions, ice over cold fuel tanks, and icing at low velocity operation is also included. The material is primarily applicable to transport and light aircraft. Special consideration for rotorcraft is appended separately.
Standard

Aircraft Inflight Ice Detectors and Icing Rate Measuring Instruments

2022-05-24
CURRENT
AIR4367B
This document provides information regarding ice detector technology and design. The SAE document AS5498 provides detailed information regarding the requirements, specifications, qualification, and certification of icing detection systems. This document is not meant to replace AS5498, but to enhance it by considering unique aspects of sensing technology and, in particular, those that may not be certificated at the time of this revision. To that end, an effort has been made not to duplicate information contained in AS5498. Icing rate information is included where applicable. The primary application is associated with ice forming on the leading edges of airfoils and inlets while the aircraft is in flight. Information related to detection of ice over cold fuel tanks and icing at low-velocity operation is included. The material is primarily applicable to fixed-wing aircraft. Unique requirements for engine inlets and rotorcraft are also provided.
Standard

ROTOR BLADE ELECTROTHERMAL ICE PROTECTION DESIGN CONSIDERATIONS

1996-07-01
HISTORICAL
AIR1667
This Aerospace Information Report (AIR) identifies and summarizes the various factors that should be considered during design, development, certification, or testing of helicopter rotor blade ice protection. Although various concepts of ice protection are mentioned in this report, the text is limited generally to those factors associated with design and substantiation of cyclic electrothermal ice protection systems as applicable to the protection of helicopter rotor blades. Other systems are described briefly in Appendix A. Applications consider main rotor blades, conventional tail rotor blades, and other types of antitorque devices. The information contained in this report is also limited to the identification of factors that should be considered and why the factor is important. Specific design, analysis and test methodologies are not included. For additional information refer to the references in Section 7.
X