Refine Your Search

Search Results

Viewing 1 to 2 of 2
Technical Paper

Criticality of Tube Bending Through CAE Understanding

2016-04-05
2016-01-1366
Tube bends are critical in an exhaust system. The acceptability of tube bends is based on the induced level of shape imperfections considered. An analysis is presented for the performance tuning of the genetic algorithm including the importance of raw material selection, ovality and elongation property. This study is an attempt to analyze the ovality effect of STAC 60/60 material. CAE tools are essential to exploit the design of experiments and find out the optimum values of the design parameters in comparison with full factorial designs. Especially the effects of materials, dimensions and geometry shape of the ultimate strength were discussed by both CAE and experiments. The ultimate strength of steel tube was evaluated at least 20-30% as a local strain independent of the materials. The dependency of ultimate bending angle on original centre angle of the tube bend was clarified.
Technical Paper

Influence of Linear and Parabolic Elements in Structural Rigidity of Converter Mounting Brackets

2015-04-14
2015-01-1326
Generation of discretization with prescribed element sizes are adapted to the geometry. From the rules of thumb, for a complicated geometry it is important to select the reasonable element order, shapes and size for accurate results. In order to that, this paper describes the influence of elemental algorithm of the catalytic converter mounting brackets. Brackets are main source of mounting of various systems mainly intake and exhaust in the engine. In hot end exhaust system, a bracket design plays a vital role because it has to withstand heavy structural vibrations without isolation combined with thermal loads. Bracket design and stiffness determines the whole catalytic converter system's rigidity. So, here discretization of converter brackets by linear and parabolic elements is studied with different elements types and compared.
X