Refine Your Search

Search Results

Viewing 1 to 8 of 8
Journal Article

Reduction of Soot Formation in an Optical Single-Cylinder Gasoline Direct-Injected Engine Operated in Stratified Mode Using 350 Bar Fuel Injection Pressure, Dual-Coil and High-Frequency Ignition Systems

2017-03-14
2017-01-9278
The current trend toward more fuel efficient vehicles with lower emission levels has prompted development of new combustion techniques for use in gasoline engines. Stratified combustion has been shown to be a promising approach for increasing the fuel efficiency. However, this technique is hampered by drawbacks such as increased particulate and standard emissions. This study attempts to address the issues of increased emission levels by investigating the influence of high frequency ionizing ignition systems, 350 bar fuel injection pressure and various tumble levels on particulate emissions and combustion characteristics in an optical SGDI engine operated in stratified mode on isooctane. Tests were performed at one engine load of 2.63 bar BMEP and speed of 1200 rpm. Combustion was recorded with two high speed color cameras from bottom and side views using optical filters for OH and soot luminescence.
Journal Article

Stratified Cold Start Sprays of Gasoline-Ethanol Blends

2009-04-20
2009-01-1496
Gasoline and gasoline-ethanol sprays from an outward-opening piezo-injector were studied in a constant volume/pressure chamber using high-speed imaging and phase doppler anemometry (PDA) under stratified cold start conditions corresponding to a vehicle ambient temperature of 243 K (−30°C/−22°F); in-cylinder air pressure of 5 bar, air temperature of 350 K (−30°C/−22°F) and fuel temperature of 243 K. The effects of varying in-cylinder pressure and temperature, fuel injection pressure and fuel temperature on the formation of gasoline, E75 and pure ethanol sprays were investigated. The results indicate that fuel composition affects spray behaviour, but less than expected. Furthermore, varying the temperature of the fuel or the air surrounding the spray also had minor effects. As expected, the fuel injection pressure was found to have the strongest influence on spray formation under stratified conditions.
Technical Paper

Transient Responses of Various Ammonia Formation Catalyst Configurations for Passive SCR in Lean-Burning Gasoline Engines under Various Real Engine Conditions.

2016-04-05
2016-01-0935
Passive selective catalyst reduction (SCR) systems can be used as aftertreatment systems for lean burn spark ignition (SI)-engines. Their operation is based on the interaction between the engine, an ammonia formation catalyst (AFC), and an SCR catalyst. Under rich conditions the AFC forms ammonia, which is stored in the SCR catalyst. Under lean conditions, the SCR catalyst reduces the engine out NOx using the stored NH3. This study compared the ammonia production and response times of a standard three way catalyst (TWC) and a Pd/Al2O3 catalyst under realistic engine operating conditions. In addition, the relationships between selected engine operating parameters and ammonia formation over a TWC were investigated, considering the influence of both the chosen load point and the engine settings.
Technical Paper

Experimental Investigation of Soot in a Spray-Guided Single Cylinder GDI Engine Operating in a Stratified Mode

2013-09-08
2013-24-0052
Forthcoming reductions in legal limits for emissions of particle matter (PM) from direct injection engines have increased the need for understanding particle distributions in the engines and the factors affecting them. Therefore, in the presented study the influence on PM-emissions of potentially important factors (fuel injection pressure, load, speed and 50% mass fraction burned phasing) on particle mass, number and size distributions were experimentally investigated. The experimental system was a spray-guided, direct injection, single-cylinder research engine operated in stratified charge mode (using gasoline with 10% ethanol as fuel), under five load and speed settings that are appropriate for stratified combustion. The particle distributions obtained from operating the engine in homogeneous combustion and stratified combustion modes were also compared.
Technical Paper

A Study of Two Basic Issues Relevant to RANS Simulations of Stratified Turbulent Combustion in a Spray-Guided Direct-Injection Spark-Ignition Engine

2014-10-13
2014-01-2572
A Spray-Guided (SG) Direct-Injection (DI) Spark-Ignition (SI) engine is widely recognized to be a promising technology capable for substantially reducing fuel consumption and carbon dioxide emissions. Accordingly, there is a strong need for developing models of some effects specific to stratified turbulent burning under conditions of elevated and rapidly varying pressure. Two such effects were addressed in the present work by performing unsteady three-dimensional URANS simulations of stratified turbulent combustion in a SG DISI engine. First, a simple method of evaluation equilibrium combustion temperature, implemented into the CFD code OpenFOAM®, was improved in order to take into account the dissociation of the combustion products. Second, stratified turbulent combustion is affected by fluctuations in mixture composition. A widely used approach to modeling this effect consists of invoking a presumed Probability Density Function (PDF) for mixture fraction f.
Technical Paper

Reduction of Fuel Consumption and Engine-out NOx Emissions in a Lean Homogeneous GDI Combustion System, Utilizing Valve Timing and an Advanced Ignition System

2015-04-14
2015-01-0776
This study investigated how the amount of dilution applied can be extended while maintaining normal engine operation in a GDI engine. Adding exhaust gases or air to a stoichiometric air/fuel mixture yields several advantages regarding fuel consumption and engine out emissions. The aim of this paper is to reduce fuel consumption by means of diluted combustion, an advanced ignition system and adjusted valve timing. Tests were performed on a Volvo four-cylinder engine equipped with a dual coil ignition system. This system made it possible to extend the ignition duration and current. Furthermore, a sweep was performed in valve timing and type of dilution, i.e., air or exhaust gases. While maintaining a CoV in IMEP < 5%, the DCI system was able to extend the maximum lambda value by 0.1 - 0.15. Minimizing valve overlap increased lambda by an additional 0.1.
Technical Paper

High-Speed Photography of Stratified Combustion in an Optical GDI Engine for Different Triple Injection Strategies

2015-04-14
2015-01-0745
To contribute to knowledge required to meet new emission requirements, relationships between multiple injection parameters, degrees of fuel stratification, combustion events, work output and flame luminosity (indicative of particulate abundance) were experimentally investigated using a single-cylinder optical GDI engine. A tested hypothesis was that advancing portions of the mass injected would enhance the fuel-air mixing and thus reduce flame luminescence. An outward-opening piezo actuated fuel injector capable of multiple injections was used to inject the fuel using different triple injection strategies, with various combinations of late and earlier injections leading to various degrees of fuel stratification. Sprays and combustion events were captured using two high-speed cameras and cylinder pressure measurements.
Technical Paper

Drive Cycle Particulate and Gaseous Emissions from a Parallel Hybrid Combustion Engine and Electric Powertrain

2015-09-06
2015-24-2538
The emissions from a parallel hybrid combustion engine and electric powertrain operated on a modified New European Drive Cycle (NEDC) was investigated in order to determine the relation between emissions and the road and engine load profile. The effect of simulated electric motor assistance during accelerations on emissions was investigated as a means to reduce particulate and gaseous emissions. The time resolved particulate number and size distribution was measured in addition to gaseous emissions. The combustion engine was a downsized, three cylinder spark ignited direct injection (SIDI) turbocharged engine fuelled with gasoline. Electric motor assistance during accelerations was simulated by reduction of the vehicle mass. This reduced engine load during accelerations. Fuel rich engine transients occurred during accelerations. NOx emissions were reduced with electric assistance due to a reduction in engine load.
X