Refine Your Search

Search Results

Viewing 1 to 7 of 7
Technical Paper

Optimization of the transient Diesel engine operation

2009-09-13
2009-24-0113
Transient emission peaks have become an important fraction of the total emissions during the standardized test cycles for passenger car Diesel engines. This paper is concerned with their reduction, in particular for nitric oxides (NOx) and particulate matter (PM) emissions, by online optimization. It is based on a former work [1] in which alternative target quantities for engine control were proposed, namely in-cylinder oxygen concentrations before (O2,BC) and after combustion (O2,AC). A generic nonlinear optimization is applied to provide a systematic determination for the optimal trajectories of these oxygen target quantities during a transient torque maneuver. The proposed method was implemented on a dynamic engine test bed using a production passenger car Diesel engine for the objective function evaluation. Torque response could be maintained unchanged while NOx as well as PM emission peaks were reduced significantly.
Technical Paper

On-line Abatement of Transient NOx and PM Diesel Engine Emissions by Oxygen Based Optimal Control

2010-10-25
2010-01-2201
Transient emission peaks have become an important fraction of the total emissions during the standardized test cycles for passenger car Diesel engines. This paper is concerned with their reduction, in particular of nitric oxides (NOx) and particulate matter (PM) emissions, by online receding horizon optimal control. It is based on former works in which alternative target quantities for engine control were proposed, namely in-cylinder oxygen concentrations before (O2,BC) and after combustion (O2,AC). The actual work is concerned with testing an in-cylinder oxygen concentrations based control in simulation as well as by a real-time implementation on a turbocharged common rail passenger car production Diesel engine. The promising results confirm the choice of these concentrations as sensible control references and the feasibility of a real-time use in a model predictive control implementation.
Technical Paper

Gray Box Diesel Engine Soot Emission Modeling Based on Two-Color Spectroscopy Measurements

2011-09-11
2011-24-0205
Modeling the soot emissions of a Diesel engine is a challenge. Although it was part of many works before, it is still not a solved issue and has a substantial potential for improvement. A major problem is the presence of two competing effects during combustion, soot formation and soot oxidation, whereas only the cumulative difference of these effects can be measured in the exhaust. There is a wide consensus that it is sensible to design crank angle resolved models for both effects. Indeed, many authors propose crank angle based soot models which are mostly based on detailed first principles based structures, e.g. spray models, engine process calculations etc. Although these models are appealing from a theoretical point of view, they are all lacking of the required measurement information to validate all the complex model parts. Finally, most parts of the model remain at their assumed values and only a few parameters are used for calibration.
Technical Paper

Measurement of Transient PM Emissions in Diesel Engine

2011-09-11
2011-24-0197
Transient emission peaks have become an important fraction of the total emissions during the standardized test cycles for passenger car Diesel engines. To this end this paper is concerned with the challenge of measuring emissions during transients. The importance of this topic is increasing due to strict regulation on pollutant emissions. Hence, suitably accurate and fast measurement devices for PM emission detection are required. Thus, we present a comparison between different measurement techniques for Particulate matter (PM) emissions from a Diesel engine, in particular during transients. The compared equipments include AVL Micro soot sensor, AVL Opacimeter, Differential mobility spectrometer and Laser induced incandescence. The goal of this paper is to reveal the most accurate device in the sense of sensitivity and dynamics for fast measurements of PM from a Diesel engine.
Technical Paper

Virtual Sensor Design of Particulate and Nitric Oxide Emissions in a DI Diesel Engine

2005-09-11
2005-24-063
As a physical description of the emissions of a specific engine is seldom possible, we present here a method to design an online dynamic estimator for PM and NOx based on data. The design method is based on a systematic search of function candidates performed using genetic programming after data have been pre-treated in an adequate fashion. While data and a simple data pretreatment prove enough for NOx, some basic physical understanding is necessary to preset the method and obtain the required precision in the case of PM. The method has been applied for raw emissions of a production DI diesel engine and shows a remarkable prediction performance.
Journal Article

Simplified Calculation of Chemical Equilibrium and Thermodynamic Properties for Diesel Combustion

2011-09-11
2011-24-0020
Computation of combustion, in particular of emissions over crank angle, relies on chemical oriented models. In some cases, chemical equilibrium can be assumed, as chemical reaction time scales tend to be fast compared to the crank rotation, so the rather complex reaction kinetics can be neglected. For engine process calculation based on the measured cylinder pressure chemical equilibrium concentrations are needed for every crank angle or calculation time step. On the one hand the equilibrium concentrations are necessary for estimating the thermodynamic properties of the working gas (internal energy and specific gas constant) which are needed for deriving the energy release (burn rate) and on the other hand the obtained concentrations are inputs for crank angle based soot and nitric oxygen emission models which depends also on the engine process calculation results.
Technical Paper

Control Oriented Crank Angle Based Analysis of Soot Dynamics During Diesel Combustion

2010-10-25
2010-01-2105
This paper presents a detailed optical and thermodynamic analysis of effects which influences the soot formation and oxidation process during Diesel combustion. To measure the actual soot concentration over crank angle an optical sensor was installed on the engine. In combination with a thermodynamic engine process calculation, based on the measured cylinder pressure, several important effects are analyzed and described in detail. The main focus of the paper is to produce knowledge on how soot dynamics is influenced by changed engine control unit (ECU) calibration parameters. A modern 4 cylinder production car Diesel engine was used for the studies, which offers a lot of opportunities to influence combustion by varying injection timing and air path ECU parameters. As a consequence discussion is done on how the analyzed effects are treated by published 0-dimensional simulation models with focus on later control and optimization application.
X