Refine Your Search

Topic

Search Results

Journal Article

The Shift in Relevance of Fuel RON and MON to Knock Onset in Modern SI Engines Over the Last 70 Years

2009-11-02
2009-01-2622
Since the advent of the spark ignition engine, the maximum engine efficiency has been knock limited. Knock is a phenomena caused by the rapid autoignition of fuel/air mixture (endgas) ahead of the flame front. The propensity of a fuel to autoignite corresponds to its autoignition chemistry at the local endgas temperature and pressure. Since a fuel blend consists of many components, its autoignition chemistry is very complex. The octane index (OI) simplifies this complex autoignition chemistry by comparing a fuel to a Primary Reference Fuel (PRF), a binary blend of iso-octane and n-heptane. As more iso-octane is added into the blend, the PRF is less likely to autoignite. The OI of a fuel is defined as the volumetric percentage of iso-octane in the PRF blend that exhibits similar knocking characteristics at the same engine conditions.
Journal Article

Trends in Performance Characteristics of Modern Automobile SI and Diesel Engines

2009-06-15
2009-01-1892
A prior study (Chon and Heywood, [1]) examined how the design and performance of spark-ignition engines evolved in the United States during the 1980s and 1990s. This paper carries out a similar analysis of trends in basic engine design and performance characteristics over the past decade. Available databases on engine specifications in the U.S., Europe, and Japan were used as the sources of information. Parameters analyzed were maximum torque, power, and speed; number of cylinders and engine configuration, cylinder displacement, bore, stroke, compression ratio; valvetrain configuration, number of valves and their control; port or direct fuel injection; naturally-aspirated or turbocharged engine concepts; spark-ignition and diesel engines. Design features are correlated with these engine’s performance parameters, normalized by engine and cylinder displacement.
Journal Article

Coordinated Strategies for Ethanol and Flex Fuel Vehicle Deployment: A Quantitative Assessment of the Feasibility of Biofuel Targets

2010-04-12
2010-01-0735
The goal of this paper is to quantitatively assess the implications of congressionally mandated biofuel targets on requirements for ethanol blending, distribution, and usage in spark ignition engines in the U.S. light-duty vehicle fleet. The “blend wall” is a term that refers to the maximum amount of ethanol that can be blended into the gasoline pool without exceeding the legal volumetric blend limit of 10%. Beyond the blend wall, the additional ethanol fuel must be used in higher blends of ethanol like E85. Once the blend wall is reached, the existing fleet of flex fuel vehicles (FFVs) will be required to use E85 for some percentage of vehicle miles traveled (VMT) in order to achieve the Renewable Fuel Standard (RFS) targets.
Journal Article

A Comparative Assessment of Electric Propulsion Systems in the 2030 US Light-Duty Vehicle Fleet

2008-04-14
2008-01-0459
This paper quantifies the potential of electric propulsion systems to reduce petroleum use and greenhouse gas (GHG) emissions in the 2030 U.S. light-duty vehicle fleet. The propulsion systems under consideration include gasoline hybrid-electric vehicles (HEVs), plug-in hybrid vehicles (PHEVs), fuel-cell hybrid vehicles (FCVs), and battery-electric vehicles (BEVs). The performance and cost of key enabling technologies were extrapolated over a 25-30 year time horizon. These results were integrated with software simulations to model vehicle performance and tank-to-wheel energy consumption. Well-to-wheel energy and GHG emissions of future vehicle technologies were estimated by integrating the vehicle technology evaluation with assessments of different fuel pathways. The results show that, if vehicle size and performance remain constant at present-day levels, these electric propulsion systems can reduce or eliminate the transport sector's reliance on petroleum.
Journal Article

The Trade-off between Automobile Acceleration Performance, Weight, and Fuel Consumption

2008-06-23
2008-01-1524
This paper evaluates how the fuel consumption of the average new U.S. passenger car will be penalized if engine and vehicle improvements continue to be focused on developing bigger, heavier and more powerful automobiles. We quantify a parameter called the Emphasis on Reducing Fuel Consumption (ERFC) and find that there has been little focus on improving fuel consumption in the U.S. over the past twenty years. In contrast, Europe has seen significantly higher ERFC. By raising the ERFC over the next few decades, we can reduce the average U.S. new car's fuel consumption by up to some 40 percent and cut the light-duty vehicle fleet's fuel use by about a quarter. Achieving substantial fuel use reduction will remain a major challenge if automobile size, weight and power continue to dominate.
Journal Article

Characterizations of Deployment Rates in Automotive Technology

2012-04-16
2012-01-1057
Passenger cars in the United States continue to incorporate increasing levels of technology and features. However, deployment of technology requires substantial development and time in the automotive sector. Prior analyses indicate that deployment of technology in the automotive sector can be described by a logistic function. These analyses refer to maximum annual growth rates as high as 17% and with developmental times of 10-15 years. However, these technologies vary widely in complexity and function, and span decades in their implementation. This work applies regression with a logistic form to a wide variety of automotive features and technologies and, using secondary regression, identifies broader trends across categories and over time.
Technical Paper

The Effect of Fuel Characteristics on Combustion in a Spark-Ignited Direct-Injection Engine

1990-10-01
902063
An experimental study was conducted on a spark-ignited direct-injection engine burning fuels with different evaporation and autoignition characteristics. The test engine was a single-cylinder Direct-Injection Stratified-Charge (DISC) engine incorporating a combustion process similar to the Texaco Controlled Combustion System. Two fuels were tested and compared with a baseline gasoline fuel: diesel fuel, and gasoline mixed with an ignition improver. The tests were done at low to medium engine loads. Diesel fuel was found to have similar levels of hydrocarbon (HC) emissions as gasoline but had different characteristics. The optimum timing for diesel fuel was retarded from that for gasoline and combustion variability was much less with diesel than with gasoline. Gasoline with a commercial ignition improver normally used to increase the cetane number of diesel fuel was also tested. The effect of changing the autoignition quality of the fuel depended on the injector used.
Journal Article

Charge Cooling Effects on Knock Limits in SI DI Engines Using Gasoline/Ethanol Blends: Part 2-Effective Octane Numbers

2012-04-16
2012-01-1284
Spark Ignited Direct Injection (SI DI) of fuel extends engine knock limits compared to Port Fuel Injection (PFI) by utilizing the large in-cylinder charge cooling effect due to fuel evaporation. The use of gasoline/ethanol blends in direct injection (DI) is therefore especially advantageous due to the high heat of vaporization of ethanol. In addition to the thermal benefit due to charge cooling, ethanol blends also display superior chemical resistance to autoignition, therefore allowing the further extension of knock limits. Unlike the charge cooling benefit which is realized mostly in SI DI engines, the chemical benefit of ethanol blends exists in Port Fuel Injected (PFI) engines as well. The aim of this study is to separate and quantify the effect of fuel chemistry and charge cooling on knock. Using a turbocharged SI engine with both PFI and DI, knock limits were measured for both injection types and five gasoline-ethanol blends.
Journal Article

A Forward-Looking Stochastic Fleet Assessment Model for Analyzing the Impact of Uncertainties on Light-Duty Vehicles Fuel Use and Emissions

2012-04-16
2012-01-0647
Transport policy research seeks to predict and substantially reduce the future transport-related greenhouse gas emissions and fuel consumption to prevent negative climate change impacts and protect the environment. However, making such predictions is made difficult due to the uncertainties associated with the anticipated developments of the technology and fuel situation in road transportation, which determine the total fuel use and emissions of the future light-duty vehicle fleet. These include uncertainties in the performance of future vehicles, fuels' emissions, availability of alternative fuels, demand, as well as market deployment of new technologies and fuels. This paper develops a methodology that quantifies the impact of uncertainty on the U.S. transport-related fuel use and emissions by introducing a stochastic technology and fleet assessment model that takes detailed technological and demand inputs.
Journal Article

The Underlying Physics and Chemistry behind Fuel Sensitivity

2010-04-12
2010-01-0617
Recent studies have shown that for a given RON, fuels with a higher sensitivity (RON-MON) tend to have better antiknock performance at most knock-limited conditions in modern engines. The underlying chemistry behind fuel sensitivity was therefore investigated to understand why this trend occurs. Chemical kinetic models were used to study fuels of varying sensitivities; in particular their autoignition delay times and chemical intermediates were compared. As is well known, non-sensitive fuels tend to be paraffins, while the higher sensitivity fuels tend to be olefins, aromatics, diolefins, napthenes, and alcohols. A more exact relationship between sensitivity and the fuel's chemical structure was not found to be apparent. High sensitivity fuels can have vastly different chemical structures. The results showed that the autoignition delay time (τ) behaved differently at different temperatures. At temperatures below 775 K and above 900 K, τ has a strong temperature dependence.
Technical Paper

Lean SI Engines: The role of combustion variability in defining lean limits

2007-09-16
2007-24-0030
Previous research has shown the potential benefits of running an engine with excess air. The challenges of running lean have also been identified, but not all of them have been fundamentally explained. Under high dilution levels, a lean limit is reached where combustion becomes unstable, significantly deteriorating drivability and engine efficiency, thus limiting the full potential of lean combustion. This paper expands the understanding of lean combustion by explaining the fundamentals behind this rapid rise in combustion variability and how this instability can be reduced. A flame entrainment combustion model was used to explain the fundamentals behind the observed combustion behavior in a comprehensive set of lean gasoline and hydrogen-enhanced cylinder pressure data in an SI engine. The data covered a wide range of operating conditions including different compression ratios, loads, types of dilution, fuels including levels of hydrogen enhancement, and levels of turbulence.
Technical Paper

Phenomena that Determine Knock Onset in Spark-Ignition Engines

2007-01-23
2007-01-0007
Experiments were carried out to collect in-cylinder pressure data and microphone signals from a single-cylinder test engine using spark timingsbefore, at, and after knock onset for toluene reference fuels. The objective was to gain insight into the phenomena that determine knock onset, detected by an external microphone. In particular, the study examines how the end-gas autoignition process changes as the engine's spark timing is advanced through the borderline knock limit into the engine's knocking regime. Fast Fourier transforms (FFT) and bandpass filtering techniques were used to process the recorded cylinder pressure data to determine knock intensities for each cycle. Two characteristic pressure oscillation frequencies were detected: a peak just above 6 kHz and a range of peaks in the 15-22 kHz range. The microphone data shows that the audible knock signal has the same 6 kHz peak.
Technical Paper

Comparative Analysis of Automotive Powertrain Choices for the Next 25 Years

2007-04-16
2007-01-1605
This paper assesses the potential improvement of automotive powertrain technologies 25 years into the future. The powertrain types assessed include naturally-aspirated gasoline engines, turbocharged gasoline engines, diesel engines, gasoline-electric hybrids, and various advanced transmissions. Advancements in aerodynamics, vehicle weight reduction and tire rolling friction are also taken into account. The objective of the comparison is the potential of anticipated improvements in these powertrain technologies for reducing petroleum consumption and greenhouse gas emissions at the same level of performance as current vehicles in the U.S.A. The fuel consumption and performance of future vehicles was estimated using a combination of scaling laws and detailed vehicle simulations. The results indicate that there is significant potential for reduction of fuel consumption for all the powertrains examined.
Technical Paper

The Relevance of Fuel RON and MON to Knock Onset in Modern SI Engines

2008-10-06
2008-01-2414
The Octane Index (OI) relates a fuel's knocking characteristics to a Primary Reference Fuel (PRF) that exhibits similar knocking characteristics at the same engine conditions. However, since the OI varies substantially with the engine operating conditions, it is typically measured at two standard conditions: the Research and Motor Octane Number (RON and MON) tests. These tests are intended to bracket the knock-limited operating range, and the OI is taken to be a weighted average of RON and MON: OI = K MON + (1-K) RON where K is the weighing factor. When the tests were established, K was approximately 0.5. However, recent tests with modern engines have found that K is now negative, indicating that the RON and MON tests no longer bracket the knock-limited operating conditions. Experiments were performed to measure the OI of different fuels in a modern engine to better understand the role of fuel sensitivity (RON-MON) on knock limits.
Technical Paper

The Performance of Future ICE and Fuel Cell Powered Vehicles and Their Potential Fleet Impact

2004-03-08
2004-01-1011
A study at MIT of the energy consumption and greenhouse gas emissions from advanced technology future automobiles has compared fuel cell powered vehicles with equivalent gasoline and diesel internal combustion engine (ICE) powered vehicles [1][2]. Current data regarding IC engine and fuel cell vehicle performance were extrapolated to 2020 to provide optimistic but plausible forecasts of how these technologies might compare. The energy consumed by the vehicle and its corresponding CO2 emissions, the fuel production and distribution energy and CO2 emissions, and the vehicle manufacturing process requirements were all evaluated and combined to give a well-to-wheels coupled with a cradle-to-grave assessment. The assessment results show that significant opportunities are available for improving the efficiency of mainstream gasoline and diesel engines and transmissions, and reducing vehicle resistances.
Technical Paper

Knock Behavior of a Lean-Burn, H2 and CO Enhanced, SI Gasoline Engine Concept

2004-03-08
2004-01-0975
Experiments were performed to identify the knock trends of lean hydrocarbon-air mixtures, and such mixtures enhanced with hydrogen (H2) and carbon monoxide (CO). These enhanced mixtures simulated 15% and 30% of the engine's gasoline being reformed in a plasmatron fuel reformer [1]. Knock trends were determined by measuring the octane number (ON) of the primary reference fuel (mixture of isooctane and n-heptane) supplied to the engine that just produced audible knock. Experimental results show that leaner operation does not decrease the knock tendency of an engine under conditions where a fixed output torque is maintained; rather it slightly increases the octane requirement. The knock tendency does decrease with lean operation when the intake pressure is held constant, but engine torque is then reduced.
Technical Paper

Effects of Oxygenated Fuels on DI Diesel Combustion and Emissions

2001-03-05
2001-01-0648
Experiments to study the effects of oxygenated fuels on emissions and combustion were performed in a single-cylinder direct-injection (DI) diesel engine. A matrix of oxygen containing fuels assessed the impact of weight percent oxygen content, oxygenate chemical structure, and oxygenate volatility on emissions. Several oxygenated chemicals were blended with an ultra-low sulfur diesel fuel and evaluated at an equivalent energy release and combustion phasing. Additional experiments investigated the effectiveness of oxygenated fuels at a different engine load, a matched fuel/air equivalence ratio, and blended with a diesel fuel from the Fischer-Tropsch process. Interactions between emissions and critical engine operating parameters were also quantified. A scanning mobility particle sizer (SMPS) was used to evaluate particle size distributions, in addition to particulate matter (PM) filter and oxides of nitrogen (NOx) measurements.
Technical Paper

Future Light-Duty Vehicles: Predicting their Fuel Consumption and Carbon-Reduction Potential

2001-03-05
2001-01-1081
The transportation sector in the United States is a major contributor to global energy consumption and carbon dioxide emission. To assess the future potentials of different technologies in addressing these two issues, we used a family of simulation programs to predict fuel consumption for passenger cars in 2020. The selected technology combinations that have good market potential and could be in mass production include: advanced gasoline and diesel internal combustion engine vehicles with automatically-shifting clutched transmissions, gasoline, diesel, and compressed natural gas hybrid electric vehicles with continuously variable transmissions, direct hydrogen, gasoline and methanol reformer fuel cell hybrid electric vehicles with direct ratio drive, and battery electric vehicle with direct ratio drive.
Technical Paper

Lean-Burn Characteristics of a Gasoline Engine Enriched with Hydrogen Plasmatron Fuel Reformer

2003-03-03
2003-01-0630
When hydrogen is added to a gasoline fueled spark ignition engine the lean limit of the engine can be extended. Lean running engines are inherently more efficient and have the potential for significantly lower NOx emissions. In the engine concept examined here, supplemental hydrogen is generated on-board the vehicle by diverting a fraction of the gasoline to a plasmatron where a partial oxidation reaction is initiated with an electrical discharge, producing a plasmatron gas containing primarily hydrogen, carbon monoxide, and nitrogen. Two different gas mixtures were used to simulate the plasmatron output. An ideal plasmatron gas (H2, CO, and N2) was used to represent the output of the theoretically best plasmatron. A typical plasmatron gas (H2, CO, N2, and CO2) was used to represent the current output of the plasmatron. A series of hydrogen addition experiments were also performed to quantify the impact of the non-hydrogen components in the plasmatron gas.
Technical Paper

An Improved Friction Model for Spark-Ignition Engines

2003-03-03
2003-01-0725
A spark-ignition engine friction model developed by Patton et al. in the late 1980s was evaluated against current engine friction data, and improved. The model, which was based on a combination of fundamental scaling laws and empirical results, includes predictions of rubbing losses from the crankshaft, reciprocating, and valvetrain components, auxiliary losses from engine accessories, and pumping losses from the intake and exhaust systems. These predictions were based on engine friction data collected between 1980 and 1988. Some of the terms are derived from lubrication theory. Other terms were derived empirically from measurements of individual friction components from engine teardown experiments. Recent engine developments (e.g., improved oils, surface finish on piston liners, valve train mechanisms) suggested that the model needed updating.
X