Criteria

Text:
Display:

Results

Viewing 1 to 30 of 44919
2011-05-17
Technical Paper
2011-01-1621
Frank Friedrich
While the microcellular urethane is widely known in the automotive industry for its use in jounce bumpers, its use in Noise Vibration Harshness (NVH) applications is often not as well recognized. Even though there are some NVH parts in the market, rubber still dominates it. The objective of this paper is to demonstrate the material properties of MCU and their relevance for NVH applications in chassis and suspension components. It will also demonstrate the importance of package design to suit the use of the MCU material. This is especially important to not only achieve the best performance but also keep overall cost and weight under control. Several application types will be introduced with general design suggestions. A detailed design guideline for these applications is not part of this paper. Each application has a large variety of parameters to be considered in the design. They need to be selectively applied based on customer performance targets.
2011-05-17
Technical Paper
2011-01-1623
Alan V. Parrett, Chong Wang, Xiandi Zeng, David Nielubowicz, Mark Snowden, Jonathon H. Alexander, Ronald Gerdes, Bill Leeder, Charles Zupan
In recent years several variants of lightweight multi-layered acoustic treatments have been used successfully in vehicles to replace conventional barrier-decoupler interior dash mats. The principle involved is to utilize increased acoustic absorption to offset the decrease in insertion loss from the reduced mass such that equivalent vehicle level performance can be achieved. Typical dual density fibrous constructions consist of a relatively dense cap layer on top of a lofted layer. The density and flow resistivity of these layers are tuned to optimize a balance of insertion loss and absorption performance. Generally these have been found to be very effective with the exception of dash mats with very high insertion loss requirements. This paper describes an alternative treatment which consists of a micro-perforated film top layer and fibrous decoupler layer.
2011-05-17
Technical Paper
2011-01-1628
Hejie Lin, Turgay Bengisu, Zissimos Mourelatos
Styrene-Butadiene Rubber (SBR), a copolymer of butadiene and styrene, is widely used in the automotive industry due to its high durability and resistance to abrasion, oils and oxidation. Some of the common applications include tires, vibration isolators, and gaskets, among others. This paper characterizes the dynamic behavior of SBR and discusses the suitability of a visco-elastic model of elastomers, known as the Kelvin model, from a mathematical and physical point of view. An optimization algorithm is used to estimate the parameters of the Kelvin model. The resulting model was shown to produce reasonable approximations of measured dynamic stiffness. The model was also used to calculate the self heating of the elastomer due to energy dissipation by the viscous damping components in the model. Developing such a predictive capability is essential in understanding the dynamic behavior of elastomers considering that their dynamic stiffness can in general depend on temperature.
2011-05-17
Technical Paper
2011-01-1629
Saurabh Suresh, Jeff Kastner, Teik Lim
Reduction of noise transmitted through laminated glass with interlayer is of interest to vehicle applications. Altering the structure of the interlayer can impact sound transmission loss particularly at the coincidence frequency. This study investigates the feasibility of including a porous layer within the laminated glass to act as an acoustic damper. To understand the underlying physics controlling transmission loss in laminated glass design, an approach utilizing transfer matrices is used for modeling each layer in the laminated glass. These transfer matrices are used to relate the acoustic characteristics of two points within a layer. For any two layers in contact, an interface matrix is defined that relates the acoustic fields of the layers depending on their individual characteristics. The solid layer is modeled as an elastic element and the sound propagation through the porous materials is described using the Biot theory.
2011-05-17
Technical Paper
2011-01-1632
Ion Pelinescu, Andrew Christie
One of the most effective NVH solutions used in the automotive industry to reduce structure-borne noise is to apply vibration damping treatments to the vehicle structure. These damping treatments need to meet increasing weight reduction targets, while offering the same or better damping properties. While Liquid Applied Structural Dampers (LASD) are now delivering high damping performance at lower densities, traditional damping measuring techniques are falling short in describing the performance of these extensional layers when applied onto more realistic test samples or real structures. This paper discusses the damping performance of LASD technology, in particular the newer generations of acrylic-based waterborne LASD materials, which through improvements in polymer architecture are achieving increased damping efficiencies together with reduced density.
2011-05-17
Technical Paper
2011-01-1633
Chong Wang, Alan Parrett
The primary function of damping treatment on a vibrating panel in a vehicle is to reduce vibration levels or radiated sound power by the dissipation of energy. However, in automotive applications the mass effects of damping materials should not be ignored, especially with regard to airborne noise performance. In this paper, a Finite Element-Statistical Energy Analysis (FE-SEA) hybrid analysis is used to evaluate the mass effects of applied damping materials on Sound Transmission Loss (STL). The analysis takes into consideration effects on both the elastic properties and modal mass of the panel. It is shown that while uniformly distributing the mass of the damping material over the panel generally over-estimate the mass effects on STL, an area weighting approach underestimates the effects. Results are confirmed by laboratory testing. A nomogram is generated to show the total effect of the mass of the damping material on STL.
2011-05-17
Technical Paper
2011-01-1624
Prasanth B, Sachin Wagh, David Hudson
Baffle plates with heat reactive expandable foam sealants have increasingly found their applications in automotives. They are used to separate body cavities and to impede noise, water and dust propagation inside of body cavities, thus control noise intrusion into the passenger compartment. Use of these sealant materials has grown significantly as the demands to improve vehicle acoustic performance has increased. Traditionally quantification of the acoustic performance of expandable baffle samples involved making separate vehicles with and without expandable baffles and measure the incab noise to know the effect. The absolute acoustic evaluation of the baffles is very difficult as number of other vehicle parameters is also responsible for vehicle incab noise. Also, it is a time consuming and a costly method to evaluate.
2011-05-17
Technical Paper
2011-01-1625
John G. Cherng, Qian Xi, Pravansu Mohanty, Gordon Ebbitt
Acoustical materials are widely used in automotive vehicles and other industrial applications. Two important parameters namely Sound Transmission Loss (STL) and absorption coefficient are commonly used to evaluate the acoustical performance of these materials. Other parameters, such as insertion loss, noise reduction, and loss factors are also used to judge their performance depending on the application of these materials. A systematic comparative study of STL and absorption coefficient was conducted on various porous acoustical materials. Several dozen materials including needled cotton fiber (shoddy) and foam materials with or without barrier/scrim were investigated. The results of STL and absorption coefficient are presented and compared. As expected, it was found that most of materials are either good in STL or good in absorption. However, some combinations can achieve a balance of performance in both categories.
2011-05-17
Technical Paper
2011-01-1626
Jonathan Alexander, David Reed, Ronald Gerdes
Flat, constant thickness composites that consisted of a microperforated top layer plus a fibrous decoupler layer were tested for random absorption and transmission loss (TL) performance. The top, microperforated layer consisted of a relatively thick film that contained small, precise micro-perforations. For reference, top layers that consisted of a resistive scrim and an impervious film were also included in this study. Two fibrous materials of constant thickness were used for the decoupler layer between a steel panel and the top microperforated film. The composites' absorption and TL performance were also modeled using the well-known transfer matrix method. This method has been implemented in a commercially available statistical energy analysis (SEA) software package. A comparison of testing and modeling results showed reasonable agreement for absorption results and even better agreement for transmission loss and insertion loss results.
2011-05-17
Journal Article
2011-01-1627
J. Liu, D. W. Herrin
Microperforated panel (MPP) absorbers are rugged, non-combustible, and do not deteriorate over time. That being the case, they are especially suitable for long term use in harsh environments. However, the acoustic performance is modified when contaminated by dust, dirt, or fluids (i.e. oil, water). This paper examines that effect experimentally and correlates the absorption performance with Maa's theory for micro-perforated panels. Transfer impedance and absorption coefficient are measured for different levels of aluminum oxide and carbon dust accumulation. The amount of dust contamination is quantified by measuring the luminance difference between clean and dirty panels with a light meter. The porosity and hole diameter in Maa's equation are modified to account for dust obstruction. The effect of coating the MPP with oil, water, and other appropriate viscous fluids was also measured. This effect was simulated by modifying the viscous factor in Maa's equation.
2011-05-17
Technical Paper
2011-01-1634
Michael Dinsmore, Richard Bliton, Scott Perz
Using advanced, multi-layer poro-elastic acoustical material modeling technologies, an example of acoustical performance optimization of an underhood sound absorber application is presented. In this case, a porous facing in combination with a fibrous sound absorber pad is optimized for maximum efficiency, which allows for dramatic reduction in pad density and weight. Overall sound absorption performance is shown to be equal or improved versus frequency relative to the incumbent design.
2011-05-17
Technical Paper
2011-01-1637
Ahad Khezerloo, Amin owhadi Esfahani PhD, Sina Jalily lng
One of important problems in railway transportation systems is control of noise and vibration. Metal foams are very good medias for absorbing noise. So in this paper, noise of motion of a train is simulated by MATLAB software and the reduction of noise level in a compartment of passenger car that is equipped by metal foam sheets is considered. Commonly, the sound absorption coefficients are obtained experimentally and they are available in datasheets and references. The different parameters that influence on the capability of this equipment were considered. For example the microstructure, thickness, magnitude of compaction, relative density and etc of metal foam is effective parameters. High porosity has good effect on the performance of absorber sheet. By increasing of compaction ratio, in frequency domain we will have enhancing of absorption of the noise. Compaction process is done by two different ways: one is direct and else is progressively.
2011-05-17
Journal Article
2011-01-1575
John David Fieldhouse, David Bryant, Chris John Talbot
Thermo-elastic and thermo-plastic behaviour takes place with a disc brake during heavy braking and it is this aspect of braking that this paper considers. The work is concerned with working towards developing design advice that provides uniform heating of the disc, and equally important, even dissipation of heat from the disc blade. The material presented emanates from a combination of modeling, on-vehicle testing but mainly laboratory observations and subsequent investigations. The experimental work makes use of a purpose built high speed brake dynamometer which incorporates the full vehicle suspension for controlled simulation of the brake and vehicle operating conditions. Advanced instrumentation allows dynamic measurement of brake pressure fluctuations, disc surface temperature and discrete vibration measurements.
2011-05-17
Technical Paper
2011-01-1573
Wen L. Li
A general numerical method, the so-called Fourier Spectral Element Method (FSEM), is described for the dynamic analysis of complex systems such as car body structures. In this method, a complex dynamic system is viewed as an assembly of a number of fundamental structural components such as beams, plates, and shells. Over each structural component, the basic solution variables (typically, the displacements) are sought as a continuous function in the form of an improved Fourier series expansion which is mathematically guaranteed to converge absolutely and uniformly over the solution domain of interest. Accordingly, the Fourier coefficients are considered as the generalized coordinates and determined using the powerful Rayleigh-Ritz method. Since this method does not involve any assumption or an introduction of any artificial model parameters, it is broadly applicable to the whole frequency range which is usually divided into low, mid, and high frequency regions.
2011-05-17
Technical Paper
2011-01-1583
Naga Narayana
Increasing sound quality with advanced audio technology has raised the bar for perceived quality targets for minimal interior noise and maximal speaker sound quality in a passenger vehicle. Speaker-borne structural vibrations and the associated squeak and rattle have been among the most frequent concerns in the perceived audio quality degradation in a vehicle. Digital detection of squeak and rattle issues due to the speaker-borne structural vibrations during the digital vehicle development phase has been a challenge due to the physical complexity involved. Recently, an effective finite element method has been developed to address structure-borne noise [1] and has been applied for detecting the issues of squeak and rattle in passenger vehicles due to vehicle-borne vibrations at vehicle, component and subcomponent levels [2, 3, 4, 5, 6, 7, 8].
2011-05-17
Technical Paper
2011-01-1594
Emiel Tijs, Jelmer Wind, Daniel Fernández Comesaña
All surfaces of a cabin interior may contribute to the sound pressure at a certain reference position, e.g. the human's ear. Panel noise contribution analysis (PNCA) involves the measurement of the contribution of separate areas. This is an effective method to determine the effect of apparent noise sources at a specific location. This paper presents the latest developments on particle velocity based panel noise contribution analysis. In contrast to the traditional methods, the particle velocity approach is faster; it requires 3 days instead of weeks. While the theoretical base of the procedure in this paper is similar to previously published particle velocity based procedure, here the measurement protocol has now been simplified dramatically, which has reduced the measurement time even more to less than a day. The method and its implementation are explained in the paper and a full measurement procedure is reported.
2011-05-17
Technical Paper
2011-01-1599
Dhanaji Kalsule, David Hudson, Yogesh Yeola, Jakir Bohari
Among the key parameters that decide the success of a vehicle in today's competitive market are quietness of passenger cabin (in respect of both airborne and structure-borne noise) and low levels of disturbing vibration felt by the occupants. To control these values in body-on-frame construction vehicles, it is necessary to identify major transfer paths and optimize the isolation characteristics of the elastomeric mounts placed at several locations between a frame and the enclosed passenger cabin of the vehicle. These body mounts play a dominant role in controlling the structure-borne noise and vibrations at floor and seat rails resulting from engine and driveline excitations, and they are also a vital element in the vehicle ride comfort tuning across a wide frequency range. In the work described in this paper, transfer path tracking was used to identify root cause for the higher noise and vibration levels of a diesel-powered sports utility vehicle.
2011-05-17
Technical Paper
2011-01-1600
Theo Geluk, Peter Van der Linden, Davide Vige', Massimo Caudano, Simone Gottardi, Fabio Ciraolo, Hamid Mir
Road-tire induced vibrations are in many vehicles determining the interior noise levels in (semi-) constant speed driving. The understanding of the noise contributions of different connections of the suspension systems to the vehicle is essential in improvement of the isolation capabilities of the suspension- and body-structure. To identify these noise contributions, both the forces acting at the suspension-to-body connections points and the vibro-acoustic transfers from the connection points to the interior microphones are required. In this paper different approaches to identify the forces are compared for their applicability to road noise analysis. First step for the force identification is the full vehicle operational measurement in which target responses (interior noise) and indicator responses (accelerations or other) are measured.
2011-05-17
Technical Paper
2011-01-1595
Rajesh Bhangale, Kumbhar S. Mansinh
Recent development in automobile industries has seen increased customer attention for good door slamming noise. One of the constituent which plays major role in building brand image of vehicle in terms of NVH performance is door slam noise quality. Hence it is very desirable to understand how different door elements radiate sound during a door-closing event and how to optimize a door structure to achieve specific sound target in order to ensure the door closing noise quality, NVH engineers needed to look at contributions from different door subsystems. The use of statistical tools like Six Sigma can further help them to ensure the consistency in results. This paper explains the systematic approach used to characterize different element of door which contributes to the overall door slam noise quality through QFD (Quality Function Deployment) and contribution analysis. The different mechanisms contributing to door slam noise were studied.
2011-05-17
Journal Article
2011-01-1602
Christopher Hartley
Understanding the resonant behavior of vehicle closures such as doors, hoods, trunks, and rear lift gates can be critical to achieve structure-borne noise, vibration, and harshness (NVH) performance requirements, particularly below 100Hz. Nearly all closure systems have elastomer weatherstrip components that create a viscoelastic boundary condition along a continuous line around its perimeter and is capable of influencing the resonant behavior of the closure system. This paper outlines an approach to simulate the static and dynamic characteristics of a closed-cell Ethylene Propylene Diene Monomer (EPDM) foam rubber weatherstrip component that is first subjected to a large-strain quasi-static preload with a small-strain sinusoidal dynamic load superimposed. An outline of a theoretical approach using “phi-functions” as developed by K.N. Morman Jr., and J.C.
2011-04-12
Journal Article
2011-01-1401
Yoolkoo Kim, Hyundal Park, Jeong Uk An, Tae-Suek Kan, Joonsung Park
Various polymer-based coatings are applied on piston skirt to reduce friction loss between the piston skirt and cylinder bore which is one of main factors of energy loss in an automotive engine system. These coatings generally consist of polymer binder (PAI) and solid lubricants (graphite or MoS₂) for low friction property. On the other hand, the present study found that PTFE as a solid lubricant and nano diamond as hard particles can be used to improve the low friction and wear resistance simultaneously. In the process of producing coating material, diamond particles pulverized to a nano size tend to agglomerate. To prevent this, silane (silicon coupling agent) treatment was applied. The inorganic functional groups of silane are attached to the nano diamond surface, which keep the diamond particles are apart.
2011-05-17
Technical Paper
2011-01-1724
Juliette Florentin, Francois Durieux, Yukihisa Kuriyama, Toyoki Yamamoto
The present work attempts a complete noise and vibration analysis for an electric vehicle at concept stage. The candidate vehicle is the Future Steel Vehicle (FSV), a lightweight steel body with an electric motor developed by WorldAutoSteel [1,2,3]. Measurements were conducted on two small Mitsubishi vehicles that both share the same body, yet one is equipped with an internal combustion engine and the other with an electric motor. The outcome was used as a starting point to identify assets and pitfalls of electric motor noise and draw a set of Noise Vibration and Harshness (NVH) targets for FSV. Compared to a combustion engine, the electric motor shows significantly lower sound pressure levels, except for an isolated high frequency peak heard at high speeds (3500 Hz when the vehicle drives at top speed). The prominence of this peak is lowered by increased use of acoustic absorbent materials in the motor compartment.
2011-05-17
Technical Paper
2011-01-1692
Seigo Yamamoto, Norimasa Kobayashi, Hiroo Yamaoka
To reduce interior noise effectively in the vehicle body structure development process, noise and vibration engineers have to first identify the portions of the body that have high sensitivity. Second, the necessary vibration characteristics of each portion must be determined, and third, the appropriate body structure for achieving the target performance of the vehicle must be realized within a short development timeframe. This paper proposes a new method based on the substructure synthesis method which is effective up to 200Hz. This method primarily utilizes equations expressing the relationship between driving point inertance change at arbitrary body portions and the corresponding sound pressure level (SPL) variation at the occupant's ear positions under external force. A modified system equation was derived from the body transfer functions and equation of motion by adding a virtual dynamic stiffness expression into the dynamic stiffness matrix of the vehicle.
2011-05-17
Journal Article
2011-01-1693
Luca Guj, Theophane Courtois, Claudio Bertolini
Typically, in the automotive industry, the design of the body damping treatment package with respect to NVH targets is carried out in such a way to achieve panel mobility targets, within given weight and cost constraints. Vibration mobility reduction can be efficiently achieved thanks to dedicated CAE FE tools, which can take into account the properties of damping composites, and also, which can provide their optimal location on the body structure, for a minimal added mass and a maximized efficiency. This need has led to the development of different numerical design and optimization strategies, all based on the modeling of the damping composites by mean of equivalent shell representations, which is a versatile solution for the full vehicle simulation with various damping layouts.
2011-05-17
Technical Paper
2011-01-1696
Nickolas Vlahopoulos, Ricardo Sbragio, Aimin Wang
Stiffened panels are encountered in many engineering systems since the stiffeners comprise the mechanism which provides support and rigidity to the panel's skin. Either a mechanical excitation or an acoustic load can be applied on a stiffened panel creating vibration that is transmitted in all panel components. Mechanical excitation tends to be localized in nature, originating from operating machinery mounted on the panel, while the acoustic excitation tends to be distributed over the entire panel, since it typically originates from an external acoustic source which creates an acoustic field impinging on the entire panel. In the Energy Finite Element Analysis (EFEA) various degrees of fidelity are possible when modeling the response of a stiffened panel. In this paper, the theoretical background and the corresponding implications associated with each alternative modeling approach are presented first.
2011-05-17
Technical Paper
2011-01-1700
Philippe Moron, Andreas Hazir, Bernd Crouse, Robert Powell, Barbara Neuhierl, Jochen Wiedemann
Wind noise has become an important indicator for passenger automobile quality. Several transmission paths can be related to different parts of the vehicle exterior. While the greenhouse (side glasses, windshield, seals & others) often dominates the interior noise level above 500 Hz, the contribution coming from the underbody area usually dominates the interior noise spectrum at lower frequencies. This paper describes a framework of numerical tools which is capable of determining realistic underbody turbulent and acoustic loads being generated for typical driving conditions, as well as performing the noise transmission through underbody panels and the propagation of sound to the drivers ear location.
2011-05-17
Technical Paper
2011-01-1715
Giovanni Visconte, Alessandro Fasana
The sound transmission loss of multilayered structures is commonly used in the building industry to quantify the acoustical performances of walls and rooms, but also in the industry to design car and aircraft components. Multilayered panels are a class of widely diffused components so that prediction models for their acoustical properties are of great importance for designers, especially to limit the number of laboratory tests which may be long, difficult and expensive to accomplish. In practice, however, between leaves in the multilayered components, finite size structural connections (points or lines) normally exist and these are not simple to be considered. Aim of this paper is to determine the equivalent characteristic impedance of a layer and a stud to be used in the classical formulation of the progressive impedance method. Predictions of the proposed method are quite satisfactorily compared with experimental results.
2011-05-17
Technical Paper
2011-01-1723
Xuefeng Zhang, Wen L. Li
It is well known that sound radiation from a rectangular panel can be significantly affected by its boundary condition. However, most of the existing investigations are primarily focused on sound radiation from plates with simply supported boundary conditions. The objective of this paper is to study the effect on sound radiation of the boundary supporting conditions generally specified in the form of discrete and/or distributed restraining springs. This will have practical implications. For example, in automotive NVH design, it is of interest to understand how the sound radiation from a body panel can be affected by the number and distribution of spot-welds. It is demonstrated through numerical examples that the distribution of spot-welds can be tuned or optimized, like other conventional design parameters, to achieve maximum sound reduction.
2011-05-17
Journal Article
2011-01-1708
Julio A. Cordioli, Márcio Calçada, Teo Rocha, Vincent Cotoni, Phil Shorter
Currently, the use of numerical and analytical tools during a vehicle development is extensive in the automotive industry. This assures that the required performance levels can be achieved from the early stages of development. However, there are some aspects of the vibro-acoustic performance of a vehicle that are rarely assessed through numerical or analytical analysis. An example is the modeling of sound transmission through vehicle sealing systems. In this case, most of the investigations have been done experimentally, and the analytical models available are not sufficiently accurate. In this paper, the modeling of the sound transmission through a vehicle door seal is presented. The study is an extension of a previous work in which the applicability of the Hybrid FE-SEA method was demonstrated for predicting the TL of sealing elements.
2011-08-30
Journal Article
2011-01-2111
Nobuo Ushioda, Yasuhiro Ogasawara
Fuel economy is one of the most essential performance requirements for Passenger Car Motor Oil because of fuel economy regulations in many countries and increasing fuel prices. The ILSAC GF-5 specification was issued on December 22, 2009 and requires better fuel economy performance based on the Sequence VID (Seq. VID) Test and higher weighted piston deposit merits based on the Sequence IIIG Test, compared to the ILSAC GF-4 specification. Fuel economy performance is affected by viscosity, friction modification and the lubricant additive chemistries. However, fuel economy engine tests under combustion mode introduce high variability into a fuel economy measurement. Screening by bench testing is complicated by the difficulty to reproduce friction conditions of all of engine parts. A motored friction torque test using an engine is one of the better solutions for fuel economy screening.
Viewing 1 to 30 of 44919

Filter

  • Range:
    to:
  • Year: