Criteria

Text:
Display:

Results

Viewing 1 to 30 of 28030
2010-10-25
Technical Paper
2010-01-2200
Withit Chatlatanagulchai, Shinapat Rhienprayoon, Kittipong Yaovaja, Krisada Wannatong
From our experiences in converting diesel engine into diesel-dual-fuel engine with natural gas as primary fuel, accurate air/fuel ratio control is vital to the high engine performance, good vehicle drivability, and low emissions. Two components enter in calculating the air/fuel ratio, namely, the amount of fresh air and the amount of diesel and natural gas. Throttle and EGR valve are two actuators directly affect the amount of air, and the desired total fuel determines how much fuel should be injected at an instance. As opposed to inactive, fully opened throttle in typical diesel engine, the throttle in diesel-dual-fuel engine is regulated to cover wider range of desired air/fuel ratio. As a result, the problem of controlling the amount of air in diesel-dual-fuel engine becomes that of multi variables in which both throttle and EGR valve are involved. We present a novel algorithm that breaks the multi-variable control problem into two single-variable problems.
2010-10-25
Journal Article
2010-01-2204
Yue Ma, Ho Teng, Marina Thelliez
Lithium-ion (Li-ion) batteries are becoming widely used high-energy sources and a replacement of the Nickel Metal Hydride batteries in electric vehicles (EV), hybrid electric vehicles (HEV) and plug-in hybrid electric vehicles (PHEV). Because of their light weight and high energy density, Li-ion cells can significantly reduce the weight and volume of the battery packs for EVs, HEVs and PHEVs. Some materials in the Li-ion cells have low thermal stabilities and they may become thermally unstable when their working temperature becomes higher than the upper limit of allowed operating temperature range. Thus, the cell working temperature has a significant impact on the life of Li-ion batteries. A proper control of the cell working temperature is crucial to the safety of the battery system and improving the battery life. This paper outlines an approach for the thermal analysis of Li-ion battery cells and modules.
2010-10-25
Journal Article
2010-01-2203
Johan Wahlström, Lars Eriksson
In diesel engines with EGR and VGT, the gas flow dynamics has significant nonlinear effects. This is shown by analyzing DC-gains in different operating points showing that these gains have large variations. To handle these nonlinear effects, a nonlinear state dependent input transformation is investigated. This input transformation is achieved through inversion of the models for EGR-flow and turbine flow. It is shown that the input transformation handles the nonlinear effects and decreases the variations in DC-gains substantially. The input transformation is combined with a new control structure that has a pumping work minimization feature and consists of PID controllers and min/max-selectors for coordinated control of EGR-fraction and oxygen/fuel ratio. The EGR flow and the exhaust manifold pressure are chosen as feedback variables in this structure. Further, the set-points for EGR-fraction and oxygen/fuel ratio are transformed to set-points for the feedback variables.
2010-10-25
Technical Paper
2010-01-2210
Withit Chatlatanagulchai, Nitirong Pongpanich, Krisada Wannatong, Shinapat Rhienprayoon
In this paper, we investigate a multivariable control of air path of a diesel-dual-fuel (DDF) engine. The engine is modified from a CI engine by injecting CNG in intake ports. The engine uses CNG as its primary fuel and diesel as its secondary fuel, mainly for initiation of combustion. The modification is economically attractive because CNG has lower price than diesel and the modification cost is minimal. However, for DDF engine, control of the air path becomes more difficult because the engine now has combined characteristics of the CI and the SI engines. The combined characteristics come from the fact that diesel is still directly injected into cylinders (CI engine) while CNG is injected at the intake ports (SI engine.) In pure CI engine, throttle is normally fully opened for maximum air intake, while EGR valve is actively actuated to obtain low emissions. In pure SI engine, however, throttle is an active actuator, driven by pedal.
2010-10-25
Technical Paper
2010-01-2211
Fabrizio Ponti, Vittorio Ravaglioli, Davide Moro, Gabriele Serra
Proper design of the combustion phase has always been crucial for Diesel engine control systems. Modern engine control strategies' growing complexity, mainly due to the increasing request to reduce pollutant emissions, requires on-board estimation of a growing number of quantities. In order to feedback a control strategy for optimal combustion positioning, one of the most important parameters to estimate on-board is the angular position where 50% of fuel mass burned over an engine cycle is reached (MFB50), because it provides important information about combustion effectiveness (a key factor, for example, in HCCI combustion control). In modern Diesel engines, injection patterns are designed with many degrees of freedom, such as the position and the duration of each injection, rail pressure or EGR rate. In this work a model of the combustion process has been developed in order to evaluate the energy release within the cylinder as a function of the injection parameters.
2010-10-25
Technical Paper
2010-01-2220
Alessandro di Gaeta, Umberto Montanaro, Veniero Giglio
Idle Speed Control plays a crucial role to reduce fuel consumption that turns in both a direct economic benefit for customers and CO\d reduction particularly important to tackle the progressive global environmental warming. Typically, control strategies available in the automotive literature solve the idle speed control problem acting both on the throttle position and the spark advance, while the Air-Fuel Ratio (AFR), that strongly affects the indicated engine torque, is kept at the stoichiometric value for the sake of emission reduction. Gasoline Direct Injection (GDI) engines, working lean and equipped with proper mechanisms to reduce NOx emissions, overcome this limitation allowing the AFR to be used for the idle speed regulation.
2010-09-28
Technical Paper
2010-32-0067
Anand T. N. C., Madan Mohan Avulapati, Devendra Deshmukh, Ravikrishna Rayavarapu
In the present study, PFI injectors which are suitable for small engines were characterized to study the effect of pressure on various spray parameters. Two plate-type PFI injectors were studied: one with two orifices, and the other with four orifices. The nozzle orifice sizes were determined by microscopy. The fuel quantity injected at pressures of 200 kPa, 500 kPa and 800 kPa, were measured by collecting the fuel, for injection pulses of different durations. The spray structure of the PFI sprays was determined by shadowgraphy. A single pulsed Nd:YAG laser in conjunction with fluorescent diffuser optics was used as the light source for shadowgraphy. Backlit images of the spray were obtained at various times after the start of injection using a CCD camera. This was done for sprays at different pressures, and different pulse durations. The spray angle, and spray tip penetration were determined from the processed shadowgraphy images.
2010-10-19
Journal Article
2010-01-2320
Markus Jochim, Thomas M. Forest
FlexRay is a time triggered automotive communication protocol that connects ECUs (Electronic Control Units) on which distributed automotive applications are executed. If exact agreement (e.g. on physical values measured by redundant sensors on different ECUs) must be reached in the presence of asymmetric communication faults, a byzantine agreement protocol like Signed Messages (SM) can be utilized. This paper gives examples of how byzantine faults can emerge in a FlexRay-based system and proposes optimizations for a FlexRay-specific implementation of the SM protocol. The protocol modifications allow for a reduction in the number of protocol messages under a slightly relaxed fault model, as well as for a reduction in the number of messages to be temporarily stored by the ECUs.
2010-10-19
Journal Article
2010-01-2319
Mukund Ghangurde
With Ford SYNC, Microsoft Corporation and Ford Motor Company have democratized in-vehicle infotainment systems - delighting consumers and bringing a new kind of agility to the automobile industry. Built on Microsoft Auto (now Windows Embedded Automotive), Ford SYNC is a factory-installed, voice-controlled communications and entertainment system that allows drivers to converge their digital lifestyle with their life on the road. Windows Embedded Automotive is an industry leading technology platform that provides integrated infotainment features and a rich user interface. Car manufacturers and suppliers worldwide can use this software to create differentiated, infotainment in-vehicle systems that are immediately attractive to consumers.
2010-10-19
Journal Article
2010-01-2318
Chris Domin
Vehicle-to-Vehicle (V2V) and Vehicle-to-Infrastructure (V2I) networks within the Intelligent Transportation System (ITS) lead to safety and mobility improvements in vehicle road traffic. This paper presents case studies that support the realization of the ITS architecture as an evolutionary process, beginning with driver information systems for enhancing feedback to the users, semi-autonomous control systems for improved vehicle system management, and fully autonomous control for improving vehicle cooperation and management. The paper will also demonstrate how the automotive, telecom, and data and service providers are working together to develop new ITS technologies.
2010-10-19
Technical Paper
2010-01-2324
Prasanta Sarkar, Debarsish Hazarika
This paper describes the development of Tata Nano Engine Management System and the related electrical and electronics architecture. The design criteria for the electrical and electronics architecture are discussed in detail in the body of the paper. When the Nano project was first conceived, the existing low cost car in India was not affordable by common people. The Nano project was targeted for a family of 4 which was using a two wheeled vehicle for commuting, irrespective of the season. For engineers, it was difficult to conceive the idea of the Nano vehicle and powertrain. How do you design a benchmark which meets both Indian and export needs and should also be extremely low in cost? There was no low cost car available either for the Nano to benchmark against. It was also clear that the strict pollution regulations existing in India could not be met without an Engine Management System and thus the focus centered on a low cost Engine Management System (EMS).
2010-10-19
Technical Paper
2010-01-2323
Keith Lang, Michael Kropinski, Tim Foster
GM's R oad-to- L ab-to- M ath (RLM) initiative is a fundamental engineering strategy leading to higher quality design, reduced structural cost, and improved product development time. GM started the RLM initiative several years ago and the RLM initiative has already provided successful results. The purpose of this paper is to detail the specific RLM efforts at GM related to powertrain controls development and calibration. This paper will focus on the current state of the art but will also examine the history and the future of these related activities. This paper will present a controls development environment and methodology for providing powertrain controls developers with virtual (in the absence of ECU and vehicle hardware) calibration capabilities within their current desktop controls development environment.
2010-10-19
Technical Paper
2010-01-2322
Robert Gee
The interdisciplinary and structured integration of subsystems into a functioning whole is at the root of Systems Engineering. Until recently in the automotive market, much of this has been specific to an automotive subdomain such as Telematics, Infotainment, Chassis Control, or Engine Management Systems. In the realm of Telematics and Connected Vehicles, the recent trend has been outward from the vehicle, focusing on expanding connectivity and data sources. Systems Engineering for Telematics now includes multiple transports spanning PAN, WLAN, and WAN communications, and beyond that has grown to include entities on the far side of the network link, including data servers, aggregation portals, and network security.
2010-10-19
Technical Paper
2010-01-2313
Robert White, Tao Zhang, Paul Tukey, Kevin Lu, David McNamara
This paper presents modeling, analysis, and results of the business viability of a set of IntelliDrive 1 safety applications in a free market setting. The primary value drivers for motorists to adopt the IntelliDrive system are based on a set of safety applications developed and analyzed by the US DOT. The modeling approach simulates IntelliDrive on-board equipment adoption by motorists based on the value of the safety applications. The simulation model uses parameters that are based on adoption rates in a similar dynamical system from recent history and incorporates feedback loops such as the positive reinforcement of vehicle-to-vehicle applications value due to increased adoption. This approach allows the analysis of alternative IntelliDrive business approaches, deployment scenarios, and policies. The net present value of the IntelliDrive system to the nation is computed under alternative scenarios.
2010-10-19
Technical Paper
2010-01-2312
Masanori Ueda, Toshio Hirota, Atsushi Hatano
Curbing emissions of carbon dioxide (CO₂), which is believed by many scientists to be a major contributor to global warming, is one of the top priority issues that must be addressed by automobile manufacturers. Automakers have set their own strategies to improve fuel economy and to reduce CO₂ emissions. Some of them include integrated approaches, focusing on not only improvement of vehicle technology, but also human factors (eco-driving support for drivers) and social and transportation factors (traffic management by intelligent transportation systems [ITS]). Among them, electric vehicles (EVs) will be a key contributor to attaining the challenging goal of CO₂ reduction. Mass deployment of EVs is required to achieve a zero-emission society. To accomplish that, new advanced technologies, new business schemes, and new partnerships are required.
2010-10-19
Technical Paper
2010-01-2314
Niall T. Berkery
Abstract Connectivity, software and services are the key elements that will define the next-generation vehicle experience. Drivers are being provided new innovative solutions that seamlessly integrate their online digital lifestyle into their vehicle environment, enabling automakers increased opportunity for brand differentiation, while giving drivers the ability to personalize their vehicles down to an individual level. This will be accomplished through “virtual accessorization” - where drivers will personalize their connected vehicle experience by choosing applications and services that best suit their individual needs. After selecting applications from an online automotive apps exchange, the apps are sent wirelessly to the car or the driver's smartphone for immediate use. The in-vehicle apps can also be configured based on who is driving, so that preferences and personal functionality moves with each driver.
2010-10-19
Technical Paper
2010-01-2336
Veerender Kaul, Sarwant Singh, Krishnasami Rajagopalan, Michael Coury
1. ABSTRACT The U.S. National Highway Transportation and Safety Agency's (NHTSA) early estimates of Motor Traffic Fatalities in 2009 in the United States [1] show continuing progress on improving traffic safety on the U.S. roadways. The number of total fatalities and the fatality rate per 100 Million Vehicle Miles (MVM), both show continuing declines. In the 10 year period from 1999 through 2009, the total fatalities have dropped from 41,611 to 33,963 and the fatality rate has dropped from 1.5 fatalities per 100MVM to 1.16 fatalities per 100MVM, a compound annual drop of 2.01% and 2.54% respectively. The large number of traffic fatalities, and the slowing down of the fatality rate decline, compared to the decade before, continues to remain a cause of concern for regulators.
2010-10-19
Journal Article
2010-01-2337
Michael Darms, Florian Foelster, Jochen Schmidt, Dominik Froehlich, Alfred Eckert
Data fusion plays a central role in more and more automotive applications, especially for driver assistance systems. On the one hand the process of data fusion combines data and information to estimate or predict states of observed objects. On the other hand data fusion introduces abstraction layers for data description and allows building more flexible and modular systems. The data fusion process can be divided into a low-level processing (tracking and object discrimination) and a high level processing (situation assessment). High level processing becomes more and more the focus of current research as different assistance applications will be combined into one comprehensive assistance system. Different levels/strategies for data fusion can be distinguished: Fusion on raw data level, fusion on feature level and fusion on decision level. All fusion strategies can be found in current driver assistance implementations.
2010-10-19
Journal Article
2010-01-2334
Falke Hendriks, Riné Pelders, Martijn Tideman
Active safety systems are increasingly becoming available in trucks and passenger vehicles. Developments in the field of active safety are shifting from increasing driver comfort towards increasing occupant safety. Furthermore, this shift is seen within active safety systems: safety functions are added to existing comfort systems, rather than adding new safety systems to the vehicle. Comfort systems such as cruise control are extended via ACC to pre-crash braking systems. Testing of active safety systems must follow these developments. Whereas standardized test programs are available for passive safety systems, such test programs are hardly available yet for active safety systems. Furthermore, test programs for passive safety systems consist of only a handful of scenarios. Test programs for active safety systems, however, should consist of much more scenarios, as those systems should function well in many different situations.
2010-10-19
Technical Paper
2010-01-2335
Jeffrey D. Rupp, Anthony G. King
Successful demonstrations of fully autonomous vehicle operation in controlled situations are leading to increased research investment and activity. This has already resulted in significant advancements in the underlying technologies necessary to make it a practical reality someday. Not only are these idealized events sparking imaginations with the potential benefits for safety, convenience, fuel economy and emissions, they also embolden some to make somewhat surprising and sometimes astonishing projections for their appearance on public roads in the near future. Are we now ready for a giant leap forward to the self-driving car with all its complexity and inter-dependencies? Humans will need to grow with and adapt to the technological advancements of the machine and we'll deeply challenge our social and political paradigms before we're done. Even if we as engineers are ready, is the driving public ready?
2010-10-19
Journal Article
2010-01-2339
Richard Altendorfer, Sebastian Wirkert, Sascha Heinrichs-Bartscher
Driver assistance systems are incorporating more and more advanced safety functions. As these functions have to react quickly and reliably in emergency situations with a false alarm rate close to zero a high integrity of the environmental perception is required. This elevated level of signal integrity can be achieved by data fusion, where the information of several, in general heterogeneous sensors is combined to obtain a better model of the environment in terms of accuracy, object integrity, object identity, etc. As an example, we demonstrate the power of sensor fusion by an automatic emergency brake (AEB) system whose environmental perception is based upon a video camera and a radar sensor. In particular we discuss the improvement of kinematic attributes such as object lateral distance as well as the object's confidence or probability of existence.
2010-10-19
Technical Paper
2010-01-2328
Jinming Yang, Jason Bauman, Al Beydoun
An effective methodology for design verification and product validation is always a key to high quality products. As many body control applications are currently implemented across multiple ECUs distributed on one or more vehicle networks, verification and validation of vehicle-level user functions will require availability of both the vehicle networks and multiple ECUs involved in the implementation of the user functions. While the ECUs are usually developed by different suppliers and vehicle networks' infrastructure and communication protocols are normally maintained and developed by the OEM, each supplier will be faced with a similar challenge - the ECU being developed cannot be fully verified and tested until all other ECUs and their communication networks are available in the final development stage.
2010-10-19
Technical Paper
2010-01-2329
Edoardo Sivera
Automotive systems are obviously becoming more and more complex. In fact, a typical vehicle is built using various communication networks, many electronic units and a never ending amount of software! The main problem automakers face now is related to the integration of different distributed functionalities, and often these functionalities are based on software. For these reasons it is very important to have an approach at “system” level in order to assure that the complete vehicle conforms to requirements and the statement of needs. It is also important that the testing phases assure a complete coverage of all requirements, in order to verify all system aspects. In this context, the software, in general, plays an important role during all phases of system development: from requirement analysis, system architecture definition, system implementation and testing phases. The software is generally acquired by external suppliers and is already programmed in the electronic devices.
2010-10-19
Technical Paper
2010-01-2327
Roger Shulze, P.K. Mallick
The automotive industry is expected to accelerate the transition to revolutionary products, rapid changes in technology and increasing technological sophistication. This will require engineers to advance their knowledge, connect and integrate different areas of knowledge and be skilled in synthesis. In addition, they must learn to work in cross-disciplinary teams and adopt a systems approach. The College of Engineering and Computer Science (CECS) at the University of Michigan-Dearborn (UM-Dearborn) responded by creating interdisciplinary MS and Ph.D. programs in automotive systems engineering (ASE) and augmenting them with hands-on research. Students at the undergraduate level can also engage in numerous ASE activities. UM-Dearborn's ASE programs offer interesting and possibly unique advantages. The first is that it offers a spectrum of ASE degree and credit programs, from the MS to the Ph.D. to continuing education.
2010-10-19
Journal Article
2010-01-2332
Jorge Sans Sangorrin, Jan Sparbert, Ulrike Ahlrichs, Wolfgang Branz, Oliver Schwindt
Active safety systems will have a great impact in the next generation of vehicles. This is partly originated by the increasing consumer's interest for safety and partly by new traffic safety laws. Control actions in the vehicle are based on an extensive environment model which contains information about relevant objects in vehicle surroundings. Sensor data fusion integrates measurements from different surround sensors into this environment model. In order to avoid system malfunctions, high reliability in the interpretation of the situation, and therefore in the environment model, is essential. Hence, the main idea of data fusion is to make use of the advantages of using multiple sensors and different technologies in order to fulfill these requirements, which are especially high due to autonomous interventions in vehicle dynamics (e. g. automatic emergency braking).
2010-10-19
Journal Article
2010-01-2333
Zachary Doerzaph, Thomas A. Dingus, Jon Hankey
The design of a safe transportation system requires numerous design decisions that should be based on data acquired by rigorous scientific method. Naturalistic data collection and analysis methods are a relatively new addition to the engineer's toolbox. The naturalistic method is based on unobtrusively monitoring driver and vehicle performance under normal, everyday, driving conditions; generally for extended collection periods. The method generates a wealth of data that is particularly well-suited for identifying the underlying causes of safety deficiencies. Furthermore, the method also provides robust data for the design and evaluation of safety enhancement systems through field studies. Recently the instrumentation required to do this type of study has become much more cost effective allowing larger numbers of vehicles to be instrumented at a fraction of the cost. This paper will first provide an overview of the naturalistic method including comparisons to other available methods.
2010-10-25
Journal Article
2010-01-2104
Ulf Aronsson, Clément Chartier, Öivind Andersson, Bengt Johansson, Johan Sjöholm, Rikard Wellander, Mattias Richter, Marcus Alden, Paul C. Miles
The soot distribution as function of ambient O₂ mole fraction in a heavy-duty diesel engine was investigated at low load (6 bar IMEP) with laser-induced incandescence (LII) and natural luminosity. A Multi-YAG laser system was utilized to create time-resolved LII using 8 laser pulses with a spacing of one CAD with detection on an 8-chip framing camera. It is well known that the engine-out smoke level increases with decreasing oxygen fraction up to a certain level where it starts to decrease again. For the studied case the peak occurred at an O₂ fraction of 11.4%. When the oxygen fraction was decreased successively from 21% to 9%, the initial soot formation moved downstream in the jet. At the lower oxygen fractions, below 12%, no soot was formed until after the wall interaction. At oxygen fractions below 11% the first evidence of soot is in the recirculation zone between two adjacent jets.
2010-10-25
Journal Article
2010-01-2091
Michael J. Lance, C. Scott Sluder, Samuel Lewis, John Storey
Exhaust gas recirculation (EGR) cooler fouling has become a significant issue for compliance with nitrogen oxides (NOx) emissions standards. In order to better understand fouling mechanisms, eleven field-aged EGR coolers provided by seven different engine manufacturers were characterized using a suite of techniques. Microstructures were characterized using scanning electron microscopy (SEM) and optical microscopy following mounting the samples in epoxy and polishing. Optical microscopy was able to discern the location of hydrocarbons in the polished cross-sections. Chemical compositions were measured using thermal gravimetric analysis (TGA), differential thermal analysis (DTA), gas chromatography-mass spectrometry (GC-MS), x-ray photoelectron spectroscopy (XPS), energy dispersive spectroscopy (EDS) and x-ray diffraction (XRD). Mass per unit area along the length of the coolers was also measured.
2010-10-25
Technical Paper
2010-01-2155
Stefan de Goede, Tiaan Rabe, Riaan Bekker, Sibusiso Mtongana, John Edwards
Direct Injection Spark Ignition (DISI) engine technology is becoming increasingly common in the South African and global vehicle parcs. South Africa is in a unique position because a significant portion of all liquid fuels consumed are synthetically produced from coal and gas. These fuels are mainly supplied into the inland regions, particularly the Gauteng province, the economic heartland of South Africa and the most densely populated area in the country. It is important to understand the performance of synthetic fuels in the latest generation engines, in order to ensure that these fuels are fit for use in these new applications. The latest generation DISI gasoline engines (also known as Gasoline Direct Injection™ and Fuel Stratified Injection™) differ significantly in operation to older Port-Fuel-Injected (PFI) engines.
2010-10-05
Technical Paper
2010-01-2011
Carsten John
Geometric product representations are of gaining importance in product manufacturing industries. Several case studies yield that the utilization of three-dimensional digital product data in the product development chain has given many manufacturing companies a big advantage in business competition. The field of application for 3D technology is versatile and its further implementation still proceeds along product delivery processes. Leveraging 3D graphics in service information creation processes like the creation of manual illustrations or service instruction imagery is currently a big topic at many companies. E. g. the utilization of animated 3D product representations for explanation of service tasks becomes possible due to the recent advances in computer hardware more and more popular.
Viewing 1 to 30 of 28030

Filter

  • Range:
    to:
  • Year: