Criteria

Text:
Display:

Results

Viewing 1 to 30 of 51959
2010-01-01
Book
Optical microscopy is one of the most valuable, but under utilized, tools for analyzing fiber reinforced polymer matrix composites. This hands-on instructional book covers a wide range of topics including sample preparation, illumination and contrast techniques, methods and reagents, and applications. Studies are presented that provide insight into processing effects, toughening approaches, damage mechanisms, and environmental effects on the microstructure of composite materials. In addition, the power of optical microscopy to study the microstructure of these heterogeneous, anisotropic materials is illustrated with more than 180 full color images.
2015-01-30
Book
This set consists of two books, Design of Automotive Composites and CAE Design and Failure Analysis of Automotive Composites, both developed by Dr. Charles Lu and Dr. Srikanth Pilla. Design of Automotive Composites reports that successful designs of automotive composites occurred recently in this arena.
2018-01-09
WIP Standard
J461_201801
Factors influencing the uses of wrought copper and copper alloys concern electrical conductivity, thermal conductivity, machinability, formability, fatigue characteristics, strength, corrosion resistance, the ease with which alloys can be joined, and the fact that these materials are nonmagnetic. Copper and its alloy also have a wide range of rich, pleasing colors. The only other metal with such distinctive coloring is gold. These materials are all easily finished by buffing, scratch brushing, plating or chemically coloring, or clear protective coating systems. When it is desired to improve one or more of the important properties of copper, alloying often solves the problem. A wide range of alloys, therefore, has been developed and commercially employed, such as the high copper alloys, brasses, leaded brasses, tin bronzes, heat treatable alloys, copper-nickel alloys, nickel silvers, and special bronzes. nickel silvers, and special bronzes.
2018-01-10
WIP Standard
J463_201801
This standard describes the chemical, mechanical, and dimensional requirements for a wide range of wrought copper and copper alloys used in the automotive and related industries. Wrought forms covered by this standard include sheet, strip, bar, plate, rod, wire, tube, and shapes; however, form required must be specified by purchaser.
1990-02-01
Technical Paper
900475
Hiro Hiroyasu, Masataka Arai
The objective of this paper is to summarize experimental results which were previously reported by the authors and to derive many useful empirical equations concerning the diesel fuel sprays. The empirical equations for break-up length, spray angle, spray tip penetration and drop size distribution of the diesel sprays are introduced to discuss the internal structure of the spray. According to the effect of injection pressure and ambient pressure on the break-up length and drop size of the diesel spray, the spray structure can be divided into two categories; incomplete and complete sprays. The equations which express the break-up length and mean diameter of the incomplete and complete sprays were obtained using different techniques according for the dominance of one or more break-up mechanisms.
1990-02-01
Technical Paper
900476
J. C. Haylock, Antonio Addeo, A. J. Hogan
Recent technological advances have made thermoplastic olefins a viable material for automotive soft interior trim. Targeted at replacing PVC skins, polyurethane foams, and substrates made from traditional styrenics, these new polypropylenes can be used in such applications as instrument panels, door panels, consoles, and seating. They offer many advantages over current materials in these stringent applications. This paper describes the olefinic materials that are suitable for soft interior skins, polyolefin extruded foam sheets that can be used in a laminate with the skin, rigid olefin compounds that are used for substrates, and the process to use these materials in manufacturing soft interior trim components.
1990-02-01
Technical Paper
900488
Steven M. Dues, Joseph M. Adams, George A. Shinkle
Knowledge learned through the successful application of millions of knock sensors on automotive engines is reported. An explanation of the basic characteristics of the knock phenomena and their relationship to sensing capabilities is given. Popular conceptions and misconceptions concerned with engine knock and the variables affecting it are examined. Sensing methods are described, with the emphasis being on vibration sensitive devices. Application methodologies and issues are discussed, with a review of potential pitfalls in sensor selection, sensor location, and systemization.
1990-02-01
Technical Paper
900486
David Nutton, Robert A. Pinnock
In order to accurately control the ignition and fuelling of a gasoline engine, in the presence of environmental and system variability, it is necessary to measure the effect this variability has on the combustion process and then to initiate control action dependent upon this effect. Various systems have been proposed to gain a more comprehensive combustion measure than today's Lambda sensors can provide, including in-cylinder pressure, ionization probes, wide range exhaust gas oxygen sensors, etc. None of these systems has proven truly practical for volume production either because of the very high sensor cost, the computational load required by the signal processing, or performance limitations. This paper describes the application of in-cylinder optical probes to combustion feedback and control.
1990-02-01
Technical Paper
900431
Francis R. Duffey
: The status of engine coolant specifications is discussed. The differing requirements for coolants for light duty engines and for heavy duty engines, test method development, and future opportunities are among the topics presented.
1990-02-01
Technical Paper
900425
Bruce D. Schrott, James W. Berg
Improved reaction injection molded (RIM) polyurea polymers for fascia have been developed which provide significantly longer mold fill times while maintaining the fast cure times sought by molders. These polymers have been formulated for use with or without fillers. In either case (filled or unfilled), surface quality comparable to painted steel can be achieved. Material performance data such as heat sag, low temperature impact, coefficient of linear thermal expansion and moisture absorption are compared for RIM polyurea and a commercial thermoplastic copolyester. The data illustrate that RIM polyurea fascia can be processed on existing equipment. These polymers provide superior performance over polyurethane/urea and equal performance with an economic advantage over injection molded engineering thermoplastic.
1990-02-01
Technical Paper
900422
Craig L. Andrews
The ability to injection mold thermoplastic reinforced with long glass fibers, in the range of .5 inches (12.7 mm) and with contents of up to 60% by weight, has increased the options for selecting structural materials The work reported is in support of developing technology that can be applied to bumper beam applications with possible translation to structural design of other applications. The primary focus of this work was to examine the feasibility of designing a bumper beam for a vehicle which would employ the use of energy absorbers. This design was to be based on the use of nonlinear finite element analysis to develop procedures for future design work. The effect of attachment constraints on the behavior of the basic bumper beam is examined to obtain data that can be provided to the automotive design engineer considering the use of a plastic bumper beam.
1990-02-01
Technical Paper
900423
Duane M. Naeger, F. Michael Plaver, David E. Henton
Thermoplastic polyurethane/ABS blends are being developed by The Dow Chemical Company to meet the high performance requirements for flexible bumper fascia. Features of these blends include paintability without priming, excellent low temperature impact after painting, good heat resistance, and lower specific gravity than other high performance thermoplastic materials. Thermoplastic polyurethane/ABS blends also have excellent flow properties, which will allow large, complex parts with thin walls to be molded easily.
1990-02-01
Technical Paper
900421
Terry D. Seagrave
As the material of choice for automotive fascias switches from polyurethanes to polyureas, the capability of making large parts on existing equipment is sacrificed. Thus, a molder is forced to modify his equipment to an increased injection rate. With recent developments in polyurea technology, however, the capability to make large parts on existing equipment is returned. This paper surveys the development of polyurea technology leading up to this most recent development. Processing, physical properties, and filler effects are included. Polyurea RIM fascia materials offer stiffer parts at demold, improved surface appearance, and improved dimensional and thermal stability. With the development described in this paper, injection times similar to polyurethane materials can be added to these benefits.
1990-02-01
Technical Paper
900436
John J. Truhan, R. Douglas Hudgens
Cast aluminum alloys 356 and 319 and wrought alloy 3003 were corrosion tested in a commercial (Fleetguard DCA-4) supplemental coolant additive (SCA) package modified by varying the potassium nitrate level. Electrochemical techniques were used to determine the stability of the passive film as a function of nitrate concentration. Cyclic potentiodynamic polarization and cyclic galvanostaircase polarization were the principle techniques used and compared. In the presence of the other inhibitors, the passive film stability did not change as the nitrate concentration varied. The corrosion resistance of each alloy was more dependent on the alloy chemistry with 3003 being the most resistant and 319 being the least. The two electrochemical techniques provided results consistent with each other.
1990-02-01
Technical Paper
900435
R. Douglas Hudgens, W. G. Bugelski
Coolant containing the proper amount of glycol and additives is critical to the reliability and durability of heavy duty diesel engines. Occasional coolant analysis is required in the field to insure that the proper coolant composition is maintained, otherwise severe engine damage can occur. There are several types of coolant test kits currently available in the field as well as commercial coolant analysis services. Some of the test methods used provide information that does not predict or correlate with a coolant's capability to prevent system corrosion and deposit formation. This paper examines the more widely available field coolant analysis methods and documents their strengths and weaknesses. Further, recommendations are made as to acceptable laboratory methods for the analysis of engine coolants.
1990-02-01
Technical Paper
900434
Richard D. Hercamp, R. Douglas Hudgens, Glenn E. Coughenour
Cavitation corrosion of cylinder liners in heavy duty engines can be one of the significant limits in engine operating time between overhauls. In both laboratory and engine dynamometer studies, engine coolants based on propylene glycol (PG) have performed better than similar formulations based on ethylene glycol with regard to cast iron cavitation corrosion. The performance of PG base coolant in all other aspects of coolant use was equivalent or superior to both industry standards and existing ethylene glycol (EG) products designed for use in heavy duty engines. Additionally, propylene glycol is cost competitive, readily available, and less toxic compared to ethylene glycol. A propylene glycol base engine coolant is described which assists the heavy duty user in solving many current problems related to cooling system servicing and engine life.
1990-02-01
Technical Paper
900433
Satoshi Ohkawa, Titose Kawasaki, Kenji Kumagae
A new antifreeze coolant has been developed for the heavy-duty diesel engine. This anti-freeze coolant has better anticorrosion performance than Supplemental Coolant Additives (SCAs) and has longer life than commercial permanent-type coolants. The new antifreeze coolant is composed of ethylene glycol and corrosion inhibitors. In glass ware tests, the new antifreeze coolant showed the best anticorrosion performance in cast iron, aluminum and other metals. The anticavitation pitting property and anti-oxidation property were also tested. In order to evaluate the new antifreeze coolant, a bench engine test procedure has been established. Since the new antifreeze coolant caused light cylinder liner pitting on bench test, antifoaminq property of the coolant was improved. The improved coolant showed excellent performance against cavitation-pitting and aluminum corrosion on engine bench and in the field.
1990-02-01
Technical Paper
900432
Greg P. Reny, Guy L. Titley
: An anhydrous coolant based on propylene glycol has been developed by DOW CHEMICAL CANADA INC. Formulated specifically for automotive cooling needs, its development involved standard ASTM corrosion testing as well as actual fleet testing. This anhydrous coolant, though not commercially available, presently meets or exceeds the current corrosion performance characteristics of present ethylene glycol based automotive coolants. Performance data accumulation from existing fleet service is ongoing and indicates satisfactory results. The latter service testing will be brought to a conclusion at a later date.
1990-02-01
Technical Paper
900447
I. Y. Cho, Hajime Fujimoto, H. Kuniyoshi, J. Y. Ha, H. Tanabe, G. T. Sato
The surroundings around the diesel spray are entrained during the growth of the spray. The mixing process between the evaporated fuel oil and the entrained surroundings, that is, the entrainment, has a significant meaning for the combustion diesel engine. It is difficult to detect the movement of the entrainment because the diesel spray is the gas-liquid two-phase flow and the unsteady phenomenon within a few milliseconds. Then, in order to clarify and to generalize the movement of entrainment, following three experiments were done. 1)Two-dimensional steady water spray -flat spray- injected into the ambient atmosphere, using tuft and hot wire method. 2) Unsteady water jet injected into water, using tracer. 3)single diesel spray injected into the atmosphere with high pressure at room temperature, using smoke wire.
1990-02-01
Technical Paper
900446
A.D. Dani, U.P. Nagpurkar, P.A. Lakshminarayanan
The mixing of fuel with air in a diesel engine strongly dictates the specific fuel consumption and exhaust smoke. Many experimental studies reported the optimum swirl for a given diesel engine at a given operating condition. However, the attempts to correlate the relative penetration, or cross wind velocity or the ratio of total momenta of fuel and air, or the angular speed of sprays at a characteristic time resulted in only partial success in the past. The present work introduces the concept of useful air. The ratio of momentum of the useful air to the total momentum of injected fuel near TDC at the end of ignition delay period is found to bear a universal relationship with the indicated efficiency and dry soot emissions in case of combustion chambers supported by air swirl. The concept is enhanced when the injected quantity is small, by considering spray detachment from the nozzle tip and the swirling cloud of fuel vapour near the walls of combustion chamber.
1990-02-01
Technical Paper
900453
G. Boehm, J. Harrer
Abstract: Gasoline engines achieve maximum efficiency when operated at the knock limit. Knock control ignition systems enable an engine to operate in either continuous or intermittent light knock. Laboratory research has indicated it is harmless to run an engine within this range. Experience with knock control engines in passenger cars has shown erosion damage on pistons. Typical examples of knock erosion damage and ways of influencing severity of damage are discussed. Nickel coating has been developed as an effective and reliable technique to protect pistons from combustion knock erosion. Additional benefits of nickel coated pistons include: Reduced piston deposits Increased wear resistance in the top ring groove. Reduced cylinder head temperatures Engine text results and an analysis of engine efficiency increase due to nickel piston coatings is also presented.
1990-02-01
Technical Paper
900454
Hideaki Kuratomi, Minoru Uchino, Yutaka Kurebayashi, Kunio Namiki, Saburo Sugiura
Application of microalloyed steel to automobile parts is becoming increasingly common in Japan. However, fatigue properties of actual automotive forged parts with slight notches on their surface have not been fully clarified. In this work, the fatigue properties of microalloyed steel were studied using test specimens and also actual automotive parts. The results indicated that microalloyed steel with an optimal microstructure showed higher notch fatigue resistance than quenched-tempered steel. The improvement of material technology and the application of microalloyed steel have not only served to bring product costs down, but have paved the way for part weight reductions. Lightweight connecting rods for the newly developed Nissan engines have been produced, contributing to improved engine performance.
1990-02-01
Technical Paper
900450
Syuichi Ezaki, Michihiko Masuda, Hiroya Fujita, Souichi Hayashi, Yukio Terashima, Katsuhiko Motosugi
An investigation was made into the effects of valve lifter material on fuel consumption and engine noise. It was found that the use of aluminum not only improves fuel economy but also reduces valve-train chatter because it is lighter in weight and less hard than steel. The stresses to which the valve lifters are subjected and their surface temperatures were measured in bench tests, and durability tests were conducted to ascertain the problems which might be expected. Based on the results of these tests, the shape was modified, a new aluminum alloy was developed and a coating was applied to the surface. The aluminum valve lifters thus developed were found to be as durable as conventional steel lifters and have been used in the new Toyota V8 engine (IUZ type).
1990-02-01
Technical Paper
900384
Kenneth H. Moyer, James B. Ryan
Abstract Often the question has been posed as to where are markets for P/M stainless steels. This question has been difficult to answer. Stainless steels are more expensive than alloy steels, because they contain chromium to provide corrosion resistance. Chromium poses a problem for P/M parts fabricators. Many sinter parts at 2050°F (1120°C). Furthermore, most insist on including at least 25% nitrogen in the sintering atmosphere. If 2050°F (1120°C) is selected for sintering, surface oxides are often only partially reduced. In addition, if nitrogen dilutes the sintering atmosphere, nitriding occurs, limiting corrosion resistance. Therefore a limited market exists for P/M stainless steels because corrosion resistance is limited. However, there is a substantial market for stainless steel bar stock. One such market, totally undeveloped, is for parts for soft magnetic applications.
1990-02-01
Technical Paper
900385
S. Chanchaona, J. S. McFeaters, R. R. Raine
The effect of high compression ratio on cycle-to-cycle variability was studied using two different combustion chamber shapes, with natural gas operation. A single cylinder Ricardo E6 test engine was run over a range of operating conditions and compression ratios. The different combustion chamber shapes were achieved by using different pistons. At each operating condition detailed cylinder pressure data were recorded for two hundred consecutive cycles allowing for a detailed study of this chaotic phenomenon. The effect of compression ratio on cyclic variation was contradictory for the two combustion chambers, and it is concluded that the real effect was not compression ratio but combustion chamber shape, since the combustion chamber geometry was changed with altering compression ratio for both combustion chambers.
1990-02-01
Technical Paper
900388
Kristine K. Craven, Nigel N. Clark, James E. Smith
Abstract In a recent study the present authors showed that piston motion in a compression ignition engine can have a small yet significant effect on ignition delay of diesel fuel. In particular, sinusoidal piston motion, or a motion with high dwell near top-dead-center, promotes reduced delay and improved cold starting relative to conventional slider-crank piston motion. This paper extends the analysis to the case of coal-diesel and coal-methanol blends, using experimental data from the thesis available in the literature. Ignition delay was shown again to be reduced with sinusoidal motion. In addition, the effect of piston motion on mass loss was considered. As expected, higher dwell near top-dead-center caused more mass loss, but there is still benefit to ignition delay of unusual piston motions unless the coefficient of leakage past the rings is very large.
1990-02-01
Technical Paper
900400
Floyd A. Wyczalek, Hideo Kawamura, Chung M. Suh
This is a descriptive review of the ceramics structural applications developed by Isuzu, Mazda, Nissan, Toyota and General Motors in spark ignition, Diesel and gas turbine automotive engines; new analytical procedures needed for the design of structural ceramics; new silicon nitride ceramics with strength of material properties approaching steel; new ceramics processing techniques which have been reduced to commercial practice in Japan on a mass production scale; and tests of vital structural components fabricated of these ceramics.
1990-02-01
Technical Paper
900397
Ja-Ye Koo, Jay K. Martin
- Simultaneous droplet sizes and velocities were obtained for a transient diesel fuel spray in a quiescent chamber at atmospheric temperature and pressure. Instantaneous injection pressure, needle lift, and rate of injection were also measured, allowing calculation of the instantaneous nozzle discharge coefficient. Short-exposure still photographs were obtained at various chamber pressure and densities to further investigate this spray. Correlations between droplet size and velocity were determined at each crank angle to observe the detailed nature of the transient events occurring in this transient diesel fuel spray. As expected, peak mean and rms velocities are observed in the center of the spray. Measured average velocities are consistent with a calculated value, using the discharge coefficient for the nozzle and the known rate of fuel injection.
1990-02-01
Technical Paper
900401
Arup Gangopadhyay, H. S. Cheng, S. T. Harman, J. M. Corwin
Abstract Tribological properties of three different ceramic materials i.e., reacted silicon nitride, pressureless sintered silicon nitride and alumina-titanium carbide composites were investigated as cam roller followers using a motorized valve train apparatus. One pair of each ceramic rollers and one pair of 52100 steel rollers were tested against a nodular cast iron camshaft. The contact areas were lubricated by a jet of mineral oil at 88°C. The tests were conducted at camshaft speeds of 250 and 3000 r.p.m which approximate idling and rated operating speeds of an engine. The experiments were conducted for a period of 900 hours. At the end of each 100 hours of testing, the wear on the cam lobes and the ceramic rollers were measured. Also replicas were taken from the worn surfaces of ceramic rollers, steel rollers and cam lobes and examined under scanning electron microscope to record the progression of surface damage and the wear mechanisms were identified.
1990-02-01
Technical Paper
900399
M. R. Ahmadi, D. B. Kittelson, D. D. Brehob
A modified CFR Cetane engine was used to analyze combustion characteristics and emissions of minimally processed coal liquids (MPCLs). To aid in combustion of the coal liquids, the ability to heat the fuel and inlet air was added. The MPCLs are derived from atmospheric distillation of coal liquids. The coal liquids are byproducts of coal gasification of Elkhorn bituminous and North Dakota lignite using the atmospheric, air blown Wellman-Galusha and pressurized, oxygen blown Lurgi gasifiers, respectively. The MPCLs were compared with three reference fuels: diesel No. 2, U12 (21 cetane number) and #-methyl napthalene (0 cetane number). The inlet air was heated from 340 to 535 K and the compression ratio was varied from 13 to 31 to provide sufficient range in temperature and pressure necessary for the combustion of low cetane number fuels. At each operating condition, fuel consumption, cylinder pressure, ignition delay, and emisions were measured.
Viewing 1 to 30 of 51959

Filter

  • Range:
    to:
  • Year: