Criteria

Text:
Author:
Display:

Results

Viewing 1 to 2 of 2
2010-10-25
Technical Paper
2010-01-2105
Klaus Siegfried Oppenauer, Daniel Alberer, Luigi del Re
This paper presents a detailed optical and thermodynamic analysis of effects which influences the soot formation and oxidation process during Diesel combustion. To measure the actual soot concentration over crank angle an optical sensor was installed on the engine. In combination with a thermodynamic engine process calculation, based on the measured cylinder pressure, several important effects are analyzed and described in detail. The main focus of the paper is to produce knowledge on how soot dynamics is influenced by changed engine control unit (ECU) calibration parameters. A modern 4 cylinder production car Diesel engine was used for the studies, which offers a lot of opportunities to influence combustion by varying injection timing and air path ECU parameters. As a consequence discussion is done on how the analyzed effects are treated by published 0-dimensional simulation models with focus on later control and optimization application.
2011-09-11
Journal Article
2011-24-0020
Klaus Siegfried Oppenauer, Daniel Alberer, Luigi del Re
Computation of combustion, in particular of emissions over crank angle, relies on chemical oriented models. In some cases, chemical equilibrium can be assumed, as chemical reaction time scales tend to be fast compared to the crank rotation, so the rather complex reaction kinetics can be neglected. For engine process calculation based on the measured cylinder pressure chemical equilibrium concentrations are needed for every crank angle or calculation time step. On the one hand the equilibrium concentrations are necessary for estimating the thermodynamic properties of the working gas (internal energy and specific gas constant) which are needed for deriving the energy release (burn rate) and on the other hand the obtained concentrations are inputs for crank angle based soot and nitric oxygen emission models which depends also on the engine process calculation results.
Viewing 1 to 2 of 2