Criteria

Text:
Display:

Results

Viewing 1 to 30 of 59447
2011-05-17
Technical Paper
2011-01-1652
Marco A. Peres, Richard W. Bono
Electrodynamic shakers or exciters are commonly used in experimental modal analysis. The practical aspects regarding the setup of the shakers, stingers and transducers are often the source of test difficulties and avoidable measurement errors. This paper reviews the basics of shakers as beneficial to modal testing, and common problems associated with setup issues and resulting measurement errors. These include shaker alignment, sensor's considerations, stinger selection, amplifiers, reciprocity assumptions and other test related circumstances.
2011-05-17
Technical Paper
2011-01-1647
Kristopher Lynch, John Maxon
Gulfstream Aerospace Corporation (GAC) owns and operates an Acoustic Test Facility (ATF) in Savannah, GA. The ATF consists of a Reverberation Chamber, Hemi-Anechoic Chamber, and a Control Room. Types of testing conducted in the ATF include Transmission Loss, Sound Power, and Vibration testing. In addition to accommodating typical types of acoustic testing, the ATF has some unique capabilities. The ATF can be used to conduct testing at cold temperatures representative of up to 45,000 ft flight altitude, while simultaneously taking Transmission Loss measurements of the chilled test sample. Additionally, the ATF has the capability of conducting Transmission Loss testing of a full mockup of the aircraft sidewall, including a section of fuselage, all the thermal/acoustic materials up to and including the interior decorative panel. A sound source capable of very high amplitudes at high frequencies is required to obtain good measurements from testing multiple wall systems such as this.
2011-05-17
Technical Paper
2011-01-1644
Greg Uhlenhake, Ahmet Selamet, Kevin Fogarty, Kevin Tallio, Philip Keller
A cold turbocharger test facility was designed and developed at The Ohio State University to measure the performance characteristics under steady state operating conditions, investigate unsteady surge, and acquire acoustic data. A specific turbocharger is used for a thermodynamic analysis to determine the capabilities and limitations of the facility, as well as for the design and construction of the screw compressor, flow control, oil, and compression systems. Two different compression system geometries were incorporated. One system allows compressor performance measurements left of the surge line, while the other incorporates a variable-volume plenum. At the full plenum volume and a specific impeller tip speed, the temporal variation of the compressor inlet and outlet and the plenum pressures as well as the turbocharger speed is presented for stable, mild surge, and deep surge operating points.
2011-05-17
Technical Paper
2011-01-1645
Michael Browne
Test Facilities for Vibrations and Acoustics can be very complicated. With the addition of necessary high power motor dynamometers for load application, the complexity of the test cell increases dramatically. The motors and subsequent additional fixtures and shafts necessary to apply loading conditions can produce additional source noises that would interfere with test measurements. In addition, facility interfaces can dramatically influence the test cell setup and reduce the measurement capabilities. This paper addresses common considerations needed in considering a new test cell for driveline vibration, acoustics, efficiency, and durability testing using motored dynamometers. In addition to outlining common design points, a practical application of 2 new dynamometers utilized for vibration, acoustics, efficiency, and durability testing and their subsequent capabilities are outlined.
2011-05-17
Technical Paper
2011-01-1643
Mary Drouin, Mark Moeller, Judith Gallman, Gerard Holup, Teresa Miller, Sang Lee
Previously part of a larger OEM, Spirit AeroSystems became a standalone company 5 years ago and is currently a Tier One supplier of aerostructures. Products include fuselage components, wing structures, engine struts and nacelles, and at the request of various OEMs, fully stuffed fuselages and podded engines where all of the wiring, heating, duct work, etc. is installed prior to delivery. While operating as part of the Propulsion Structures and Systems Business Unit, the design, testing and analysis services provided by the acoustics lab potentially impact all programs at all stages of development because of increasing noise regulations and material certification requirements for implementation in high noise environments.
2011-05-17
Technical Paper
2011-01-1656
Albers Albert, Alexander Schwarz
The NVH (Noise Vibration Harshness) behavior of modern vehicles becomes more and more important - especially in terms of new powertrain concepts, like in hybrid electric or full electric vehicles. There are many tools and methods to develop and optimize the NVH behavior of modern vehicles. At the end of the development process, subjective ratings from road tests are very important. For objective analyses, different approaches based on artificial neural networks exist. One example is the AVL-DRIVE™ system, a driveability analysis and benchmarking system which allows, based on a very small set of sensors, an adequate objective rating of the vehicle's driveability. The system automatically detects driving maneuvers and rates the driveability. This article presents a method which is able not only to rate different maneuvers and the behavior of the vehicle but also to detect phenomena and causes in the domain of NVH.
2011-05-17
Technical Paper
2011-01-1654
Timothy J. Copeland, INCE, Richard S. Wilhoit
Pass by noise is a complex test that requires meeting several different standards with regard to the physical track layout, measurement systems, data acquisition, triggering, processing and analysis. Overview of the pertinent standards for Tire and Vehicle pass by testing is provided along with the description of development of an advanced solution to meet our specific needs. Key features of the solution are provided along with the lessons learned from our operation of the system at our facility and several other test tracks.
2011-05-17
Technical Paper
2011-01-1662
Chad Walber, Jason R. Blough, Mark Johnson, Carl Anderson
When testing dynamic structures, it is important to note that the dynamic system in question may be submerged into a fluid during operation and to properly test the structure under the same condition in order to understand the true dynamic parameters of the system. In this way, the mass and stiffness coupling to the particular fluid, for the case of this study, automatic transmission fluid, may be taken into account. This is especially important in light structures where the coupling between the fluid mass and the structural mass may be great. A structure was tested with a laser vibrometer using several impact methods in open air to determine which impact method would be most suitable for submerged testing. The structure was then submerged in transmission fluid with an accelerometer attached and subsequently tested and compared to the previous results.
2011-05-17
Journal Article
2011-01-1614
Thomas C. Austin, Pamela Amette, Christopher F. Real, John F. Lenkeit
In response to a growing need for a practical and technically valid method for measuring exhaust sound pressure levels (SPL) of on-highway motorcycles, the SAE Motorcycle Technical Steering Committee has developed Surface Vehicle Recommended Practice J28251, “Measurement of Exhaust Sound Pressure Levels of Stationary On-Highway Motorcycles,” which includes a new stationary sound test procedure and recommendations for limit values. Key goals of the development process included: minimal equipment requirements, ease of implementation by non-technical personnel, and consistency with the federal EPA requirements; in particular, vehicles compliant with the EPA requirements should not fail when assessed using J2825. Development of the recommended practice involved a comprehensive field study of 25 motorcycles and 76 different exhaust systems, ranging from relatively quiet OEM systems to unbaffled, aftermarket exhaust systems.
2011-05-17
Technical Paper
2011-01-1621
Frank Friedrich
While the microcellular urethane is widely known in the automotive industry for its use in jounce bumpers, its use in Noise Vibration Harshness (NVH) applications is often not as well recognized. Even though there are some NVH parts in the market, rubber still dominates it. The objective of this paper is to demonstrate the material properties of MCU and their relevance for NVH applications in chassis and suspension components. It will also demonstrate the importance of package design to suit the use of the MCU material. This is especially important to not only achieve the best performance but also keep overall cost and weight under control. Several application types will be introduced with general design suggestions. A detailed design guideline for these applications is not part of this paper. Each application has a large variety of parameters to be considered in the design. They need to be selectively applied based on customer performance targets.
2011-05-17
Technical Paper
2011-01-1623
Alan V. Parrett, Chong Wang, Xiandi Zeng, David Nielubowicz, Mark Snowden, Jonathon H. Alexander, Ronald Gerdes, Bill Leeder, Charles Zupan
In recent years several variants of lightweight multi-layered acoustic treatments have been used successfully in vehicles to replace conventional barrier-decoupler interior dash mats. The principle involved is to utilize increased acoustic absorption to offset the decrease in insertion loss from the reduced mass such that equivalent vehicle level performance can be achieved. Typical dual density fibrous constructions consist of a relatively dense cap layer on top of a lofted layer. The density and flow resistivity of these layers are tuned to optimize a balance of insertion loss and absorption performance. Generally these have been found to be very effective with the exception of dash mats with very high insertion loss requirements. This paper describes an alternative treatment which consists of a micro-perforated film top layer and fibrous decoupler layer.
2011-05-17
Technical Paper
2011-01-1628
Hejie Lin, Turgay Bengisu, Zissimos Mourelatos
Styrene-Butadiene Rubber (SBR), a copolymer of butadiene and styrene, is widely used in the automotive industry due to its high durability and resistance to abrasion, oils and oxidation. Some of the common applications include tires, vibration isolators, and gaskets, among others. This paper characterizes the dynamic behavior of SBR and discusses the suitability of a visco-elastic model of elastomers, known as the Kelvin model, from a mathematical and physical point of view. An optimization algorithm is used to estimate the parameters of the Kelvin model. The resulting model was shown to produce reasonable approximations of measured dynamic stiffness. The model was also used to calculate the self heating of the elastomer due to energy dissipation by the viscous damping components in the model. Developing such a predictive capability is essential in understanding the dynamic behavior of elastomers considering that their dynamic stiffness can in general depend on temperature.
2011-05-17
Technical Paper
2011-01-1629
Saurabh Suresh, Jeff Kastner, Teik Lim
Reduction of noise transmitted through laminated glass with interlayer is of interest to vehicle applications. Altering the structure of the interlayer can impact sound transmission loss particularly at the coincidence frequency. This study investigates the feasibility of including a porous layer within the laminated glass to act as an acoustic damper. To understand the underlying physics controlling transmission loss in laminated glass design, an approach utilizing transfer matrices is used for modeling each layer in the laminated glass. These transfer matrices are used to relate the acoustic characteristics of two points within a layer. For any two layers in contact, an interface matrix is defined that relates the acoustic fields of the layers depending on their individual characteristics. The solid layer is modeled as an elastic element and the sound propagation through the porous materials is described using the Biot theory.
2011-05-17
Technical Paper
2011-01-1632
Ion Pelinescu, Andrew Christie
One of the most effective NVH solutions used in the automotive industry to reduce structure-borne noise is to apply vibration damping treatments to the vehicle structure. These damping treatments need to meet increasing weight reduction targets, while offering the same or better damping properties. While Liquid Applied Structural Dampers (LASD) are now delivering high damping performance at lower densities, traditional damping measuring techniques are falling short in describing the performance of these extensional layers when applied onto more realistic test samples or real structures. This paper discusses the damping performance of LASD technology, in particular the newer generations of acrylic-based waterborne LASD materials, which through improvements in polymer architecture are achieving increased damping efficiencies together with reduced density.
2011-05-17
Technical Paper
2011-01-1624
Prasanth B, Sachin Wagh, David Hudson
Baffle plates with heat reactive expandable foam sealants have increasingly found their applications in automotives. They are used to separate body cavities and to impede noise, water and dust propagation inside of body cavities, thus control noise intrusion into the passenger compartment. Use of these sealant materials has grown significantly as the demands to improve vehicle acoustic performance has increased. Traditionally quantification of the acoustic performance of expandable baffle samples involved making separate vehicles with and without expandable baffles and measure the incab noise to know the effect. The absolute acoustic evaluation of the baffles is very difficult as number of other vehicle parameters is also responsible for vehicle incab noise. Also, it is a time consuming and a costly method to evaluate.
2011-05-17
Technical Paper
2011-01-1625
John G. Cherng, Qian Xi, Pravansu Mohanty, Gordon Ebbitt
Acoustical materials are widely used in automotive vehicles and other industrial applications. Two important parameters namely Sound Transmission Loss (STL) and absorption coefficient are commonly used to evaluate the acoustical performance of these materials. Other parameters, such as insertion loss, noise reduction, and loss factors are also used to judge their performance depending on the application of these materials. A systematic comparative study of STL and absorption coefficient was conducted on various porous acoustical materials. Several dozen materials including needled cotton fiber (shoddy) and foam materials with or without barrier/scrim were investigated. The results of STL and absorption coefficient are presented and compared. As expected, it was found that most of materials are either good in STL or good in absorption. However, some combinations can achieve a balance of performance in both categories.
2011-05-17
Technical Paper
2011-01-1626
Jonathan Alexander, David Reed, Ronald Gerdes
Flat, constant thickness composites that consisted of a microperforated top layer plus a fibrous decoupler layer were tested for random absorption and transmission loss (TL) performance. The top, microperforated layer consisted of a relatively thick film that contained small, precise micro-perforations. For reference, top layers that consisted of a resistive scrim and an impervious film were also included in this study. Two fibrous materials of constant thickness were used for the decoupler layer between a steel panel and the top microperforated film. The composites' absorption and TL performance were also modeled using the well-known transfer matrix method. This method has been implemented in a commercially available statistical energy analysis (SEA) software package. A comparison of testing and modeling results showed reasonable agreement for absorption results and even better agreement for transmission loss and insertion loss results.
2011-05-17
Journal Article
2011-01-1627
J. Liu, D. W. Herrin
Microperforated panel (MPP) absorbers are rugged, non-combustible, and do not deteriorate over time. That being the case, they are especially suitable for long term use in harsh environments. However, the acoustic performance is modified when contaminated by dust, dirt, or fluids (i.e. oil, water). This paper examines that effect experimentally and correlates the absorption performance with Maa's theory for micro-perforated panels. Transfer impedance and absorption coefficient are measured for different levels of aluminum oxide and carbon dust accumulation. The amount of dust contamination is quantified by measuring the luminance difference between clean and dirty panels with a light meter. The porosity and hole diameter in Maa's equation are modified to account for dust obstruction. The effect of coating the MPP with oil, water, and other appropriate viscous fluids was also measured. This effect was simulated by modifying the viscous factor in Maa's equation.
2011-05-17
Journal Article
2011-01-1641
Claudio Bertolini, Luca Guj
The Diffuse Field Absorption Coefficient (DFAC) is a physical quantity very often used in the automotive industry to assess the performance of sound absorbing multilayers. From a theoretical standpoint, such quantity is defined under rather ideal conditions: the multilayer is assumed to be infinite in extent and the exciting acoustic field is assumed to be perfectly diffuse. From a practical standpoint, in the automotive industry the DFAC is generally measured on samples having a relatively small size (of the order of 1m2) and using relatively small cabins (in the order of 6-7 m₃). It is well known that both these factors (the finite size of the sample and the small volume of the cabin) can have an influence on the results of the measurements, generating deviations from the theoretical DFAC.
2011-05-17
Journal Article
2011-01-1642
Richard A. Kolano, P.E.
This paper presents an overview of the acoustical design of a small volume self-contained acoustical testing facility (SCATF). The design focuses on a small volume (25 m₃) reverberation room for testing the random incidence sound absorption performance of small samples of acoustical materials and automotive parts. This reverberation room also couples to a small volume hemi-anechoic room and serves as the random incidence source room for sound transmission loss testing. These testing approaches respectively target the SAE J2883 (pending) and J1400 test standards.
2011-05-17
Technical Paper
2011-01-1634
Michael Dinsmore, Richard Bliton, Scott Perz
Using advanced, multi-layer poro-elastic acoustical material modeling technologies, an example of acoustical performance optimization of an underhood sound absorber application is presented. In this case, a porous facing in combination with a fibrous sound absorber pad is optimized for maximum efficiency, which allows for dramatic reduction in pad density and weight. Overall sound absorption performance is shown to be equal or improved versus frequency relative to the incumbent design.
2011-05-17
Technical Paper
2011-01-1637
Ahad Khezerloo, Amin owhadi Esfahani PhD, Sina Jalily lng
One of important problems in railway transportation systems is control of noise and vibration. Metal foams are very good medias for absorbing noise. So in this paper, noise of motion of a train is simulated by MATLAB software and the reduction of noise level in a compartment of passenger car that is equipped by metal foam sheets is considered. Commonly, the sound absorption coefficients are obtained experimentally and they are available in datasheets and references. The different parameters that influence on the capability of this equipment were considered. For example the microstructure, thickness, magnitude of compaction, relative density and etc of metal foam is effective parameters. High porosity has good effect on the performance of absorber sheet. By increasing of compaction ratio, in frequency domain we will have enhancing of absorption of the noise. Compaction process is done by two different ways: one is direct and else is progressively.
2011-05-17
Journal Article
2011-01-1575
John David Fieldhouse, David Bryant, Chris John Talbot
Thermo-elastic and thermo-plastic behaviour takes place with a disc brake during heavy braking and it is this aspect of braking that this paper considers. The work is concerned with working towards developing design advice that provides uniform heating of the disc, and equally important, even dissipation of heat from the disc blade. The material presented emanates from a combination of modeling, on-vehicle testing but mainly laboratory observations and subsequent investigations. The experimental work makes use of a purpose built high speed brake dynamometer which incorporates the full vehicle suspension for controlled simulation of the brake and vehicle operating conditions. Advanced instrumentation allows dynamic measurement of brake pressure fluctuations, disc surface temperature and discrete vibration measurements.
2011-05-17
Technical Paper
2011-01-1574
Eric Denys
The development and validation of a brake pad insulator damping measurement procedure by the SAE Brake NVH Standards Committee was presented at the 2010 SAE Brake Colloquium (Paper 2010-01-1685). In Europe, in 2010, the EKB Working Group identified the need to develop a similar procedure, and started some activities which lead to the release of a standard similar but different than the SAE J3001. The SAE and EKB working groups agreed that having a global standard was of paramount importance, so the 2 groups decided to meet in November of 2010 to flush out the details of the J3001 global procedure. The details of the new test procedure, test setup and recommendation for proper test practices are described in this paper. This description provides an excellent foundation for evaluating the insulator damping properties over a range of temperatures and frequencies.
2011-05-17
Technical Paper
2011-01-1596
Hiroshi Yamauchi
This paper shows some discussions regarding an experimental consideration of booming noise level when a vehicle drives over a small protruding object on a road. Booming noise level is subjected to vehicle speed and is not proportional to the speed. Generally, it is known as the maximal noise level is being created with vehicle speed of around 40 km/h, however, the obvious cause of the phenomena have not been completely determined so far. In this paper, at first, it shows an experimental data that was being observed in detail with variable vehicle speed. Based on our detailed observation of the experimental data, reversed-phase two inputs by existence of a protruding object, was confirmed. By considering correlation between time difference of two inputs and vehicle speed, it is demonstrated that those two inputs around 40km/h induce a tire resonance which leads to a booming noise in a cabin. We define it as ‘harsh booming noise’ here.
2011-04-12
Journal Article
2011-01-1401
Yoolkoo Kim, Hyundal Park, Jeong Uk An, Tae-Suek Kan, Joonsung Park
Various polymer-based coatings are applied on piston skirt to reduce friction loss between the piston skirt and cylinder bore which is one of main factors of energy loss in an automotive engine system. These coatings generally consist of polymer binder (PAI) and solid lubricants (graphite or MoS₂) for low friction property. On the other hand, the present study found that PTFE as a solid lubricant and nano diamond as hard particles can be used to improve the low friction and wear resistance simultaneously. In the process of producing coating material, diamond particles pulverized to a nano size tend to agglomerate. To prevent this, silane (silicon coupling agent) treatment was applied. The inorganic functional groups of silane are attached to the nano diamond surface, which keep the diamond particles are apart.
2011-05-17
Technical Paper
2011-01-1512
Jaegon Yoo, Klaus Pfeiffer, Koo-Tae Kang
Advanced powertrain test, which is simulating real road load condition, was performed on the dynamic test bed. This cutting edge system can reproduce real road resistance based upon the vehicle dynamic model and wheel slip model. This wheel slip function is simulating the real behavior of the powertrain wheel as close as possible at each wheel independently. Additionally, low inertia of dynamometer motor themselves is another advantage for this purpose. This test bed is capable of testing all kinds of 2WD and 4WD powertrain configuration regardless of transmission type. Also, vehicle configuration can be mounted and tested on this test bed with small addition of supporting system alternatively. For the application, a four wheel drive powertrain was mounted on the test bed and driveline noise and vibration behavior such as transfer rattling noise and tip in/out shock were reproduced on this test bed.
2011-05-17
Technical Paper
2011-01-1724
Juliette Florentin, Francois Durieux, Yukihisa Kuriyama, Toyoki Yamamoto
The present work attempts a complete noise and vibration analysis for an electric vehicle at concept stage. The candidate vehicle is the Future Steel Vehicle (FSV), a lightweight steel body with an electric motor developed by WorldAutoSteel [1,2,3]. Measurements were conducted on two small Mitsubishi vehicles that both share the same body, yet one is equipped with an internal combustion engine and the other with an electric motor. The outcome was used as a starting point to identify assets and pitfalls of electric motor noise and draw a set of Noise Vibration and Harshness (NVH) targets for FSV. Compared to a combustion engine, the electric motor shows significantly lower sound pressure levels, except for an isolated high frequency peak heard at high speeds (3500 Hz when the vehicle drives at top speed). The prominence of this peak is lowered by increased use of acoustic absorbent materials in the motor compartment.
2011-05-17
Journal Article
2011-01-1693
Luca Guj, Theophane Courtois, Claudio Bertolini
Typically, in the automotive industry, the design of the body damping treatment package with respect to NVH targets is carried out in such a way to achieve panel mobility targets, within given weight and cost constraints. Vibration mobility reduction can be efficiently achieved thanks to dedicated CAE FE tools, which can take into account the properties of damping composites, and also, which can provide their optimal location on the body structure, for a minimal added mass and a maximized efficiency. This need has led to the development of different numerical design and optimization strategies, all based on the modeling of the damping composites by mean of equivalent shell representations, which is a versatile solution for the full vehicle simulation with various damping layouts.
2011-08-30
Journal Article
2011-01-2111
Nobuo Ushioda, Yasuhiro Ogasawara
Fuel economy is one of the most essential performance requirements for Passenger Car Motor Oil because of fuel economy regulations in many countries and increasing fuel prices. The ILSAC GF-5 specification was issued on December 22, 2009 and requires better fuel economy performance based on the Sequence VID (Seq. VID) Test and higher weighted piston deposit merits based on the Sequence IIIG Test, compared to the ILSAC GF-4 specification. Fuel economy performance is affected by viscosity, friction modification and the lubricant additive chemistries. However, fuel economy engine tests under combustion mode introduce high variability into a fuel economy measurement. Screening by bench testing is complicated by the difficulty to reproduce friction conditions of all of engine parts. A motored friction torque test using an engine is one of the better solutions for fuel economy screening.
Viewing 1 to 30 of 59447

Filter

  • Range:
    to:
  • Year: