Criteria

Text:
Topic:
Display:

Results

Viewing 1 to 30 of 48127
2011-05-17
Journal Article
2011-01-1651
Hideo Suzuki, Takashi Nakashima, Hirokazu Tatekawa, Hisanobu Mizukawa, Michael H. Smith
It is very important to accurately measure rotation frequencies and fluctuations of rotating systems since they cause vibrations and noises, and since they sometimes indicate system malfunctions. Most rotating systems are equipped with electro- or magneto-conductive gears as their components, and rotation pulses are very commonly obtained by installing electromagnetic or electrostatic type sensors closely to target gears, and time dependent (instantaneous) rotation frequencies are obtained from intervals between adjacent pulses. However, since the number of pulses per revolution is relatively small, a method of obtaining instantaneous frequencies from adjacent pulse intervals is not adequate. For these kinds of pulses, instantaneous rotation frequencies are typically derived using the analytic signal (or Hilbert transform) method. In either case, there is an inherent limitation in using rotation pulses obtained from gears.
2011-05-17
Journal Article
2011-01-1649
Andrew J. Morello, Jason R. Blough, Jeffrey Naber, Libin Jia
Research into the estimation of diesel engine combustion metrics via non-intrusive means, typically referred to as “remote combustion sensing” has become an increasingly active area of combustion research. Success in accurately estimating combustion metrics with low-cost non-intrusive transducers has been proven and documented by multiple sources on small scale diesel engines (2-4 cylinders, maximum outputs of 67 Kw, 210 N-m). This paper investigates the application of remote combustion sensing technology to a larger displacement inline 6-cylinder diesel with substantially higher power output (280 kW, 1645 N-m) than previously explored. An in-depth frequency analysis has been performed with the goal of optimizing the estimated combustion signature which has been computed based upon the direct relationship between the combustion event measured via a pressure transducer, and block vibration measured via accelerometers.
2011-05-17
Journal Article
2011-01-1650
Michael Dinsmore
Highly effective double-wall systems for automotive applications can often have over a 90 dB span in sound transmission loss values between low frequencies, where they are usually least effective and upper frequencies, where they are typically most effective. Particularly for 16-bit measurement systems, but even for 24-bit systems, this can represent a very difficult scenario for measurements in either the source and/or receiving chamber(s). A methodology to balance the observed dynamic ranges in both source and receiving chambers is presented and discussed in this paper. An improved sound transmission loss measurement system can therefore be implemented which reduces the potential of overload or noise floor contamination occurring in measurements within either chamber. Low frequency SPL requirements for the source chamber speaker system and flanking noise issues with adjacent test chambers can also be typically reduced.
2011-05-17
Technical Paper
2011-01-1647
Kristopher Lynch, John Maxon
Gulfstream Aerospace Corporation (GAC) owns and operates an Acoustic Test Facility (ATF) in Savannah, GA. The ATF consists of a Reverberation Chamber, Hemi-Anechoic Chamber, and a Control Room. Types of testing conducted in the ATF include Transmission Loss, Sound Power, and Vibration testing. In addition to accommodating typical types of acoustic testing, the ATF has some unique capabilities. The ATF can be used to conduct testing at cold temperatures representative of up to 45,000 ft flight altitude, while simultaneously taking Transmission Loss measurements of the chilled test sample. Additionally, the ATF has the capability of conducting Transmission Loss testing of a full mockup of the aircraft sidewall, including a section of fuselage, all the thermal/acoustic materials up to and including the interior decorative panel. A sound source capable of very high amplitudes at high frequencies is required to obtain good measurements from testing multiple wall systems such as this.
2011-05-17
Technical Paper
2011-01-1644
Greg Uhlenhake, Ahmet Selamet, Kevin Fogarty, Kevin Tallio, Philip Keller
A cold turbocharger test facility was designed and developed at The Ohio State University to measure the performance characteristics under steady state operating conditions, investigate unsteady surge, and acquire acoustic data. A specific turbocharger is used for a thermodynamic analysis to determine the capabilities and limitations of the facility, as well as for the design and construction of the screw compressor, flow control, oil, and compression systems. Two different compression system geometries were incorporated. One system allows compressor performance measurements left of the surge line, while the other incorporates a variable-volume plenum. At the full plenum volume and a specific impeller tip speed, the temporal variation of the compressor inlet and outlet and the plenum pressures as well as the turbocharger speed is presented for stable, mild surge, and deep surge operating points.
2011-05-17
Technical Paper
2011-01-1643
Mary Drouin, Mark Moeller, Judith Gallman, Gerard Holup, Teresa Miller, Sang Lee
Previously part of a larger OEM, Spirit AeroSystems became a standalone company 5 years ago and is currently a Tier One supplier of aerostructures. Products include fuselage components, wing structures, engine struts and nacelles, and at the request of various OEMs, fully stuffed fuselages and podded engines where all of the wiring, heating, duct work, etc. is installed prior to delivery. While operating as part of the Propulsion Structures and Systems Business Unit, the design, testing and analysis services provided by the acoustics lab potentially impact all programs at all stages of development because of increasing noise regulations and material certification requirements for implementation in high noise environments.
2011-05-17
Technical Paper
2011-01-1661
Roland Sottek
Many applications in acoustics, such as transfer path analysis and synthesis (the well-known tools for troubleshooting and sound design of vehicle interior or exterior noise), require the measurement of transfer functions. Several methods are available to determine the transfer functions between identified sources and selected receiver locations. For example, transfer functions can be obtained by means of direct or reciprocal measurements. Due to errors and restrictive constraints during the measurements, the results of the two methods differ. The quality of measured transfer functions must be evaluated with respect to the auralization of the synthesized receiver signals or even the auralization of individual noise shares caused by a specific source and transmitted via one or a combination of paths. This paper compares the different measurement techniques of transfer functions in theory and in practice.
2011-05-17
Technical Paper
2011-01-1660
Ienkaran Arasaratnam, Saeid Habibi, Christopher Kelly, Tony J. Fountaine, Jimi Tjong
Advanced engine test methods incorporate several different sensing and signal processing techniques for identifying and locating manufacturing or assembly defects of an engine. A successful engine test method therefore, requires advanced signal processing techniques. This paper introduces a novel signal processing technique to successfully detect a faulty internal combustion engine in a quantitative manner. Accelerometers are mounted on the cylinder head and lug surfaces while vibration signals are recorded during engine operation. Using the engine's cam angular position, the vibration signals are transformed from the time domain to the crank-angle domain. At the heart of the transformation lies interpolation. In this paper, linear, cubic spline and sinc interpolation methods are demonstrated for reconstructing vibration signals in the crank-angle domain.
2011-05-17
Technical Paper
2011-01-1659
Michael Albright, Kurt Veggeberg
A powered seat adjuster is a complex mass-produced assembly that is heavily optimized for low cost and light weight. The consequence is an inevitable degree of uncontrolled variation in components, subassemblies, and final product. Automakers are driving an exceptional focus on quality and the showroom experience of the car buyer is paramount. Therefore, any seat adjuster with the potential to not satisfy the customer's expectation is likely to be screened on the production line. This paper describes NVH metric design in the context of automated production line detection of seat adjuster defects. A key requirement of the production environment is that the metrics offer intuitive explanations of possible defects and are based on industry-standard formulations. The metric set is a hybrid of objective and subjective parameters with a focus on ensuring a robust sorting process that maximizes detection while minimizing the possibility of failing acceptable product.
2011-05-17
Journal Article
2011-01-1657
Sandro Guidati, Roland Sottek
Microphone arrays used in vehicle acoustics are mainly designed for fast setup and basic evaluation (e.g. using delay-and-sum beamforming) resulting in a restriction to free field environments. Applications in vehicle interiors require advanced source localization techniques taking into account the reflections at the different panels appearing as mirror sources. Coherence filtering techniques allow for the detection of these mirror sources. An additional sensor is placed as a reference close to the main source. This reference signal is used to filter the array signals increasing the overall dynamic range of the acoustic source mapping. The discrimination of the original source and the reflections is obtained by manipulating the impulse responses between the reference signal and all microphone signals.
2011-05-17
Technical Paper
2011-01-1654
Timothy J. Copeland, INCE, Richard S. Wilhoit
Pass by noise is a complex test that requires meeting several different standards with regard to the physical track layout, measurement systems, data acquisition, triggering, processing and analysis. Overview of the pertinent standards for Tire and Vehicle pass by testing is provided along with the description of development of an advanced solution to meet our specific needs. Key features of the solution are provided along with the lessons learned from our operation of the system at our facility and several other test tracks.
2011-05-17
Journal Article
2011-01-1653
Kent K.H. Fung, Xiaochuan Li, Wei Huang, Richard E. Wentzel, Keda zhu
Several methods have been established to measure the normal incidence transmission loss of noise control materials using the standing wave tube. In the automotive NVH field, multi-layered systems are common-place, for example in the interaction between the traditional mass-decoupler dash insulator and the front dash sheet metal. Most of the sound transmission loss studies utilizing the standing wave tube have so far been focused on single layer systems with only a limited number of studies on multi-layered systems. Therefore there is only some degree of information on the correlation between this said method and the more widely accepted two-room methods of determining sound transmission properties in these systems.
2011-05-17
Technical Paper
2011-01-1612
Dan Faylor
As North American truck manufactures have entered the global market it has become apparent that there are widely varying drive-by noise regulations required in various areas of the world. This paper will describe differences between various test procedures, track layouts, and required levels. Data will be presented showing vehicle results from various procedures, used to quantify differences in noise levels between a range of procedures. Countries were ranked from least restrictive to most restrictive based on test procedures and legal market requirements.
2011-05-17
Technical Paper
2011-01-1611
Dhanesh Purekar
An existing pass by noise data acquisition system was upgraded to provide the sophisticated data analysis techniques and test site efficiency required to comply with the current and future drive by noise regulations. Use of six sigma tool such as voice of the customer helped in defining the customer requirements which were then translated into the desired engineering characteristics using QFD. Pugh concept matrix narrowed down the best option suitable for the test site modifications taking into account the critical constraints such as test complexity, system cost & transparency to the existing drive by noise setup. Features of the new system include data telemetry, frequency analysis, portability and efficient data management through the use of advanced data acquisition system. Wireless mode of the data transmission helped significantly avoid most of the test site modifications, which in turn helped to reduce the overall system implementation cost.
2011-05-17
Journal Article
2011-01-1614
Thomas C. Austin, Pamela Amette, Christopher F. Real, John F. Lenkeit
In response to a growing need for a practical and technically valid method for measuring exhaust sound pressure levels (SPL) of on-highway motorcycles, the SAE Motorcycle Technical Steering Committee has developed Surface Vehicle Recommended Practice J28251, “Measurement of Exhaust Sound Pressure Levels of Stationary On-Highway Motorcycles,” which includes a new stationary sound test procedure and recommendations for limit values. Key goals of the development process included: minimal equipment requirements, ease of implementation by non-technical personnel, and consistency with the federal EPA requirements; in particular, vehicles compliant with the EPA requirements should not fail when assessed using J2825. Development of the recommended practice involved a comprehensive field study of 25 motorcycles and 76 different exhaust systems, ranging from relatively quiet OEM systems to unbaffled, aftermarket exhaust systems.
2011-05-17
Journal Article
2011-01-1613
Paul R. Donavan
With increasing use of the constant speed pass-by conditions to capture the noise generated by this portion of the vehicle operating cycle, knowledge of the contributing sources of noise was become increasingly important. For frequencies above 400 Hz, the noise is dominated by tire/pavement noise as can be demonstrated by comparing on-board sound intensity (OBSI) measurements to constant speed pass-by noise levels. At lower frequencies, direct on-board measurements become more difficult as the tire/pavement noise source strength decreases with decreasing frequency and microphone induced wind noise increases. To investigate the contribution of sources at these lower frequencies, cruise and coast pass-by measurements were made for a number of different pavement types and two different tire designs at test speeds of 56, 72, and 97 km/h over a frequency range from 50 to 10,000 Hz. OBSI measurements were also conducted for these same conditions.
2011-05-17
Technical Paper
2011-01-1608
Todd Freeman, Gabriella Cerrato
Design parameters for automotive components can be highly affected by the requirements imposed for vehicle pass-by compliance. The key systems affecting pass-by performance generally include the engine, tires, intake system, and exhaust system. The development of these systems is often reliant on the availability of prototype hardware for physical testing on a pass-by course, which can lead to long and potentially costly development cycles. These development cycles can benefit significantly from the ability to utilize analytical data to guide development of component-level design parameters related to pass-by noise. To achieve this goal, test and analysis methods were developed to estimate the vehicle-level pass-by performance from component level data, both from physical and/or analytical sources. The result allows for the estimation of the overall vehicle-level pass-by noise along with the contributions to the total and dominant frequency content from each of the key noise sources.
2011-05-17
Journal Article
2011-01-1607
Douglas Moore
ISO has revised the 10844 International Standard for test surfaces used in measurement of exterior vehicle and tire noise emission. The revision has a goal to reduce the track to track sound level variation presently observed by 50%, without changing the mean value. ISO has incorporated improved texture measurement procedures, improved acoustic absorption measurement procedures, and has added measurement procedures for track roughness. In addition, specifications for texture, absorption, roughness, planarity, and asphalt mix were revised or added to recognize improved technical methods and to achieve the goal of variation reduction. The specification development was supported by a construction program where four candidate ISO 10844 tracks were constructed in Japan, France, and the US to verify the technical principles and to validate construction process capability. This paper will address the technical changes and reasons for these changes in the revised ISO 10844.
2011-05-17
Technical Paper
2011-01-1610
Jacobus Huijssen, Raphael Hallez, Bert Pluymers, Stijn Donders, Wim Desmet
Prediction of the drive-by noise level in the early design stage of an automotive vehicle is feasible if the source signatures and source-receiver transfer functions may be determined from simulations based on the available CAD/CAE models. This paper reports on the performance of a drive-by noise synthesis procedure in which the transfer functions are numerically evaluated by employing the Fast Multipole Boundary Element Method (FMBEM). The proposed synthesis procedure first computes the steady-state receiver contributions of the sources as appearing from a number of vehicle positions along the drive path. In a second step, these contributions are then combined into a single transient signal from a moving vehicle for each source-receiver pair by means of a travel time correction.
2011-05-17
Technical Paper
2011-01-1609
Karl Janssens, Pieter Aarnoutse, Peter Gajdatsy, Laurent Britte, Filip Deblauwe, Herman Van der Auweraer
This paper presents a new time-domain source contribution analysis method for in-room pass-by noise. The core of the method is a frequency-domain ASQ model (Airborne Source Quantification) representing each noise generating component (engine, exhaust, left and right tyres, etc.) by a number of acoustic sources. The ASQ model requires the measurement of local FRF's and acoustic noise transfer functions to identify the operational loads from nearby pressure indicator responses and propagate the loads to the various target microphones on the sides of the vehicle. Once a good ASQ model is obtained, FIR filters are constructed, allowing a time-domain synthesis of the various source contributions to each target microphone. The synthesized target response signals are finally recombined into a pass-by sound by taking into account the speed profile of the vehicle.
2011-05-17
Technical Paper
2011-01-1620
Anna Graf, David Lepley, Sivapalan Senthooran
For most car manufacturers, aerodynamic noise is becoming the dominant high frequency noise source (≻ 500 Hz) at highway speeds. Design optimization and early detection of issues related to aeroacoustics remain mainly an experimental art implying high cost prototypes, expensive wind tunnel sessions, and potentially late design changes. To reduce the associated costs as well as development times, there is strong motivation for the development of a reliable numerical prediction capability. This paper presents a computational approach that can be used to predict the vehicle interior noise from the greenhouse wind noise sources, during the early stages of the vehicle developmental process so that design changes can be made to improve the wind noise performance of the vehicle.
2011-05-17
Technical Paper
2011-01-1623
Alan V. Parrett, Chong Wang, Xiandi Zeng, David Nielubowicz, Mark Snowden, Jonathon H. Alexander, Ronald Gerdes, Bill Leeder, Charles Zupan
In recent years several variants of lightweight multi-layered acoustic treatments have been used successfully in vehicles to replace conventional barrier-decoupler interior dash mats. The principle involved is to utilize increased acoustic absorption to offset the decrease in insertion loss from the reduced mass such that equivalent vehicle level performance can be achieved. Typical dual density fibrous constructions consist of a relatively dense cap layer on top of a lofted layer. The density and flow resistivity of these layers are tuned to optimize a balance of insertion loss and absorption performance. Generally these have been found to be very effective with the exception of dash mats with very high insertion loss requirements. This paper describes an alternative treatment which consists of a micro-perforated film top layer and fibrous decoupler layer.
2011-05-17
Technical Paper
2011-01-1622
Ray Helferty, Walid Omar, Philip Weber
Expandable cavity sealers have become a critical component of the overall acoustic package that contributes to the documented noise reduction in passenger car applications over the course of the last twenty years. They encompass a variety of technologies, some of which are delivered into the supply chain as bulk materials and others which are highly engineered parts and assemblies. As the market for smaller and more fuel efficient vehicles continues to expand, design architectures of the base vehicle platforms are evolving to include body designs with smaller spaces between adjacent layers of sheet metal. As this space, or cavity, between the adjacent layers of sheet metal is shrinking, the complexity of components that must be integrated into the space between these layers of steel is increasing. Complex arrays of airbags, corresponding wire harnesses, and water management tools are now standard requirements in the design process.
2011-05-17
Technical Paper
2011-01-1617
T.S. Miller, S.W. Lee, G. Holup, J.M. Gallman, M.J. Moeller
The turbulent boundary layer (TBL) that forms on the outer skin of the aircraft in flight is a significant source of interior noise. However, the existing quiet test facilities capable of measuring the TBL wall pressure fluctuations tend to be at low Mach numbers. The objective of this study was to develop a new inlet for an existing six inch square (or 6×6) flow duct that would be adequately free from facility noise to study the TBL wall pressure fluctuations at higher, subsonic Mach numbers. First, the existing flow duct setup was used to measure the TBL wall pressure fluctuations. Then the modified inlet was successfully used to make similar measurements up to Mach number of 0.6. These measurements will be used in the future to validate wall pressure spectrum models for interior noise analysis programs such as statistical energy analysis (SEA) and dynamic energy analysis (DEA).
2011-05-17
Technical Paper
2011-01-1615
Darius Kurniawan, Eric Rogers
Doors inside an automotive HVAC module are essential components to ensure occupant comfort by controlling the cabin temperature and directing the air flow. For temperature control, the function of a door is not only to close/block the airflow path via the door seal that presses against HVAC wall, but also control the amount of hot and cold airflow to maintain cabin temperature. To meet the stringent OEM sealing requirement while maintaining a cost-effective product, a “V-Shape” soft rubber seal is commonly used. However, in certain conditions when the door is in the position other than closed which creates a small gap, this “V-Shape” seal is susceptible to the generation of objectionable whistle noise for the vehicle passengers. This nuisance can easily reduce end-customer satisfaction to the overall HVAC performance.
2011-05-17
Technical Paper
2011-01-1619
Shi Zheng, Chris Kleinfeld
This paper presents a hybrid method that predicts the whistle occurrence of an automotive exhaust tuning device. The method utilizes inputs from a limited amount of test work or numerical simulation to predict the whistle occurrence in a wider range of flow conditions (temperature and velocity). It has the advantages of being quick and low cost compared with extensive tests or the computational fluid dynamics approach.
2011-05-17
Technical Paper
2011-01-1618
George Chaoying Peng
Automotive manufactures demand early assessment of vehicle form design against wind noise attribute to eliminate any engineering waste induced by late design changes. To achieve such an assessment, it is necessary to determine a measurable quantity which is able to represent vehicle form changes, and to understand the relationship between the quantity and vehicle interior cabin noise. This paper reports experimental measurements of vehicle exterior surface pressure and the interior cabin noise level in response to the change of exterior rear view mirror shape. Measurements show that exterior surface pressure on vehicle greenhouse panel is a primary factor of wind noise load to the interior cabin noise; they can be used in preliminary wind noise ranking. Care should be taken when using them in ranking vehicle form wind noise performance. It has been observed that a change in surface pressure on the front side window does not necessarily lead to a change in the interior cabin noise.
2011-05-17
Technical Paper
2011-01-1629
Saurabh Suresh, Jeff Kastner, Teik Lim
Reduction of noise transmitted through laminated glass with interlayer is of interest to vehicle applications. Altering the structure of the interlayer can impact sound transmission loss particularly at the coincidence frequency. This study investigates the feasibility of including a porous layer within the laminated glass to act as an acoustic damper. To understand the underlying physics controlling transmission loss in laminated glass design, an approach utilizing transfer matrices is used for modeling each layer in the laminated glass. These transfer matrices are used to relate the acoustic characteristics of two points within a layer. For any two layers in contact, an interface matrix is defined that relates the acoustic fields of the layers depending on their individual characteristics. The solid layer is modeled as an elastic element and the sound propagation through the porous materials is described using the Biot theory.
2011-05-17
Technical Paper
2011-01-1632
Ion Pelinescu, Andrew Christie
One of the most effective NVH solutions used in the automotive industry to reduce structure-borne noise is to apply vibration damping treatments to the vehicle structure. These damping treatments need to meet increasing weight reduction targets, while offering the same or better damping properties. While Liquid Applied Structural Dampers (LASD) are now delivering high damping performance at lower densities, traditional damping measuring techniques are falling short in describing the performance of these extensional layers when applied onto more realistic test samples or real structures. This paper discusses the damping performance of LASD technology, in particular the newer generations of acrylic-based waterborne LASD materials, which through improvements in polymer architecture are achieving increased damping efficiencies together with reduced density.
2011-05-17
Technical Paper
2011-01-1633
Chong Wang, Alan Parrett
The primary function of damping treatment on a vibrating panel in a vehicle is to reduce vibration levels or radiated sound power by the dissipation of energy. However, in automotive applications the mass effects of damping materials should not be ignored, especially with regard to airborne noise performance. In this paper, a Finite Element-Statistical Energy Analysis (FE-SEA) hybrid analysis is used to evaluate the mass effects of applied damping materials on Sound Transmission Loss (STL). The analysis takes into consideration effects on both the elastic properties and modal mass of the panel. It is shown that while uniformly distributing the mass of the damping material over the panel generally over-estimate the mass effects on STL, an area weighting approach underestimates the effects. Results are confirmed by laboratory testing. A nomogram is generated to show the total effect of the mass of the damping material on STL.
Viewing 1 to 30 of 48127

Filter

  • Range:
    to:
  • Year: