Criteria

Text:
Display:

Results

Viewing 1 to 30 of 78097
2011-05-17
Journal Article
2011-01-1649
Andrew J. Morello, Jason R. Blough, Jeffrey Naber, Libin Jia
Research into the estimation of diesel engine combustion metrics via non-intrusive means, typically referred to as “remote combustion sensing” has become an increasingly active area of combustion research. Success in accurately estimating combustion metrics with low-cost non-intrusive transducers has been proven and documented by multiple sources on small scale diesel engines (2-4 cylinders, maximum outputs of 67 Kw, 210 N-m). This paper investigates the application of remote combustion sensing technology to a larger displacement inline 6-cylinder diesel with substantially higher power output (280 kW, 1645 N-m) than previously explored. An in-depth frequency analysis has been performed with the goal of optimizing the estimated combustion signature which has been computed based upon the direct relationship between the combustion event measured via a pressure transducer, and block vibration measured via accelerometers.
2011-05-17
Technical Paper
2011-01-1647
Kristopher Lynch, John Maxon
Gulfstream Aerospace Corporation (GAC) owns and operates an Acoustic Test Facility (ATF) in Savannah, GA. The ATF consists of a Reverberation Chamber, Hemi-Anechoic Chamber, and a Control Room. Types of testing conducted in the ATF include Transmission Loss, Sound Power, and Vibration testing. In addition to accommodating typical types of acoustic testing, the ATF has some unique capabilities. The ATF can be used to conduct testing at cold temperatures representative of up to 45,000 ft flight altitude, while simultaneously taking Transmission Loss measurements of the chilled test sample. Additionally, the ATF has the capability of conducting Transmission Loss testing of a full mockup of the aircraft sidewall, including a section of fuselage, all the thermal/acoustic materials up to and including the interior decorative panel. A sound source capable of very high amplitudes at high frequencies is required to obtain good measurements from testing multiple wall systems such as this.
2011-05-17
Technical Paper
2011-01-1644
Greg Uhlenhake, Ahmet Selamet, Kevin Fogarty, Kevin Tallio, Philip Keller
A cold turbocharger test facility was designed and developed at The Ohio State University to measure the performance characteristics under steady state operating conditions, investigate unsteady surge, and acquire acoustic data. A specific turbocharger is used for a thermodynamic analysis to determine the capabilities and limitations of the facility, as well as for the design and construction of the screw compressor, flow control, oil, and compression systems. Two different compression system geometries were incorporated. One system allows compressor performance measurements left of the surge line, while the other incorporates a variable-volume plenum. At the full plenum volume and a specific impeller tip speed, the temporal variation of the compressor inlet and outlet and the plenum pressures as well as the turbocharger speed is presented for stable, mild surge, and deep surge operating points.
2011-05-17
Technical Paper
2011-01-1645
Michael Browne
Test Facilities for Vibrations and Acoustics can be very complicated. With the addition of necessary high power motor dynamometers for load application, the complexity of the test cell increases dramatically. The motors and subsequent additional fixtures and shafts necessary to apply loading conditions can produce additional source noises that would interfere with test measurements. In addition, facility interfaces can dramatically influence the test cell setup and reduce the measurement capabilities. This paper addresses common considerations needed in considering a new test cell for driveline vibration, acoustics, efficiency, and durability testing using motored dynamometers. In addition to outlining common design points, a practical application of 2 new dynamometers utilized for vibration, acoustics, efficiency, and durability testing and their subsequent capabilities are outlined.
2011-05-17
Technical Paper
2011-01-1660
Ienkaran Arasaratnam, Saeid Habibi, Christopher Kelly, Tony J. Fountaine, Jimi Tjong
Advanced engine test methods incorporate several different sensing and signal processing techniques for identifying and locating manufacturing or assembly defects of an engine. A successful engine test method therefore, requires advanced signal processing techniques. This paper introduces a novel signal processing technique to successfully detect a faulty internal combustion engine in a quantitative manner. Accelerometers are mounted on the cylinder head and lug surfaces while vibration signals are recorded during engine operation. Using the engine's cam angular position, the vibration signals are transformed from the time domain to the crank-angle domain. At the heart of the transformation lies interpolation. In this paper, linear, cubic spline and sinc interpolation methods are demonstrated for reconstructing vibration signals in the crank-angle domain.
2011-05-17
Technical Paper
2011-01-1656
Albers Albert, Alexander Schwarz
The NVH (Noise Vibration Harshness) behavior of modern vehicles becomes more and more important - especially in terms of new powertrain concepts, like in hybrid electric or full electric vehicles. There are many tools and methods to develop and optimize the NVH behavior of modern vehicles. At the end of the development process, subjective ratings from road tests are very important. For objective analyses, different approaches based on artificial neural networks exist. One example is the AVL-DRIVE™ system, a driveability analysis and benchmarking system which allows, based on a very small set of sensors, an adequate objective rating of the vehicle's driveability. The system automatically detects driving maneuvers and rates the driveability. This article presents a method which is able not only to rate different maneuvers and the behavior of the vehicle but also to detect phenomena and causes in the domain of NVH.
2011-05-17
Technical Paper
2011-01-1662
Chad Walber, Jason R. Blough, Mark Johnson, Carl Anderson
When testing dynamic structures, it is important to note that the dynamic system in question may be submerged into a fluid during operation and to properly test the structure under the same condition in order to understand the true dynamic parameters of the system. In this way, the mass and stiffness coupling to the particular fluid, for the case of this study, automatic transmission fluid, may be taken into account. This is especially important in light structures where the coupling between the fluid mass and the structural mass may be great. A structure was tested with a laser vibrometer using several impact methods in open air to determine which impact method would be most suitable for submerged testing. The structure was then submerged in transmission fluid with an accelerometer attached and subsequently tested and compared to the previous results.
2011-05-17
Technical Paper
2011-01-1612
Dan Faylor
As North American truck manufactures have entered the global market it has become apparent that there are widely varying drive-by noise regulations required in various areas of the world. This paper will describe differences between various test procedures, track layouts, and required levels. Data will be presented showing vehicle results from various procedures, used to quantify differences in noise levels between a range of procedures. Countries were ranked from least restrictive to most restrictive based on test procedures and legal market requirements.
2011-05-17
Technical Paper
2011-01-1611
Dhanesh Purekar
An existing pass by noise data acquisition system was upgraded to provide the sophisticated data analysis techniques and test site efficiency required to comply with the current and future drive by noise regulations. Use of six sigma tool such as voice of the customer helped in defining the customer requirements which were then translated into the desired engineering characteristics using QFD. Pugh concept matrix narrowed down the best option suitable for the test site modifications taking into account the critical constraints such as test complexity, system cost & transparency to the existing drive by noise setup. Features of the new system include data telemetry, frequency analysis, portability and efficient data management through the use of advanced data acquisition system. Wireless mode of the data transmission helped significantly avoid most of the test site modifications, which in turn helped to reduce the overall system implementation cost.
2011-05-17
Journal Article
2011-01-1614
Thomas C. Austin, Pamela Amette, Christopher F. Real, John F. Lenkeit
In response to a growing need for a practical and technically valid method for measuring exhaust sound pressure levels (SPL) of on-highway motorcycles, the SAE Motorcycle Technical Steering Committee has developed Surface Vehicle Recommended Practice J28251, “Measurement of Exhaust Sound Pressure Levels of Stationary On-Highway Motorcycles,” which includes a new stationary sound test procedure and recommendations for limit values. Key goals of the development process included: minimal equipment requirements, ease of implementation by non-technical personnel, and consistency with the federal EPA requirements; in particular, vehicles compliant with the EPA requirements should not fail when assessed using J2825. Development of the recommended practice involved a comprehensive field study of 25 motorcycles and 76 different exhaust systems, ranging from relatively quiet OEM systems to unbaffled, aftermarket exhaust systems.
2011-05-17
Journal Article
2011-01-1613
Paul R. Donavan
With increasing use of the constant speed pass-by conditions to capture the noise generated by this portion of the vehicle operating cycle, knowledge of the contributing sources of noise was become increasingly important. For frequencies above 400 Hz, the noise is dominated by tire/pavement noise as can be demonstrated by comparing on-board sound intensity (OBSI) measurements to constant speed pass-by noise levels. At lower frequencies, direct on-board measurements become more difficult as the tire/pavement noise source strength decreases with decreasing frequency and microphone induced wind noise increases. To investigate the contribution of sources at these lower frequencies, cruise and coast pass-by measurements were made for a number of different pavement types and two different tire designs at test speeds of 56, 72, and 97 km/h over a frequency range from 50 to 10,000 Hz. OBSI measurements were also conducted for these same conditions.
2011-05-17
Technical Paper
2011-01-1608
Todd Freeman, Gabriella Cerrato
Design parameters for automotive components can be highly affected by the requirements imposed for vehicle pass-by compliance. The key systems affecting pass-by performance generally include the engine, tires, intake system, and exhaust system. The development of these systems is often reliant on the availability of prototype hardware for physical testing on a pass-by course, which can lead to long and potentially costly development cycles. These development cycles can benefit significantly from the ability to utilize analytical data to guide development of component-level design parameters related to pass-by noise. To achieve this goal, test and analysis methods were developed to estimate the vehicle-level pass-by performance from component level data, both from physical and/or analytical sources. The result allows for the estimation of the overall vehicle-level pass-by noise along with the contributions to the total and dominant frequency content from each of the key noise sources.
2011-05-17
Technical Paper
2011-01-1610
Jacobus Huijssen, Raphael Hallez, Bert Pluymers, Stijn Donders, Wim Desmet
Prediction of the drive-by noise level in the early design stage of an automotive vehicle is feasible if the source signatures and source-receiver transfer functions may be determined from simulations based on the available CAD/CAE models. This paper reports on the performance of a drive-by noise synthesis procedure in which the transfer functions are numerically evaluated by employing the Fast Multipole Boundary Element Method (FMBEM). The proposed synthesis procedure first computes the steady-state receiver contributions of the sources as appearing from a number of vehicle positions along the drive path. In a second step, these contributions are then combined into a single transient signal from a moving vehicle for each source-receiver pair by means of a travel time correction.
2011-05-17
Technical Paper
2011-01-1609
Karl Janssens, Pieter Aarnoutse, Peter Gajdatsy, Laurent Britte, Filip Deblauwe, Herman Van der Auweraer
This paper presents a new time-domain source contribution analysis method for in-room pass-by noise. The core of the method is a frequency-domain ASQ model (Airborne Source Quantification) representing each noise generating component (engine, exhaust, left and right tyres, etc.) by a number of acoustic sources. The ASQ model requires the measurement of local FRF's and acoustic noise transfer functions to identify the operational loads from nearby pressure indicator responses and propagate the loads to the various target microphones on the sides of the vehicle. Once a good ASQ model is obtained, FIR filters are constructed, allowing a time-domain synthesis of the various source contributions to each target microphone. The synthesized target response signals are finally recombined into a pass-by sound by taking into account the speed profile of the vehicle.
2011-05-17
Technical Paper
2011-01-1622
Ray Helferty, Walid Omar, Philip Weber
Expandable cavity sealers have become a critical component of the overall acoustic package that contributes to the documented noise reduction in passenger car applications over the course of the last twenty years. They encompass a variety of technologies, some of which are delivered into the supply chain as bulk materials and others which are highly engineered parts and assemblies. As the market for smaller and more fuel efficient vehicles continues to expand, design architectures of the base vehicle platforms are evolving to include body designs with smaller spaces between adjacent layers of sheet metal. As this space, or cavity, between the adjacent layers of sheet metal is shrinking, the complexity of components that must be integrated into the space between these layers of steel is increasing. Complex arrays of airbags, corresponding wire harnesses, and water management tools are now standard requirements in the design process.
2011-05-17
Technical Paper
2011-01-1617
T.S. Miller, S.W. Lee, G. Holup, J.M. Gallman, M.J. Moeller
The turbulent boundary layer (TBL) that forms on the outer skin of the aircraft in flight is a significant source of interior noise. However, the existing quiet test facilities capable of measuring the TBL wall pressure fluctuations tend to be at low Mach numbers. The objective of this study was to develop a new inlet for an existing six inch square (or 6×6) flow duct that would be adequately free from facility noise to study the TBL wall pressure fluctuations at higher, subsonic Mach numbers. First, the existing flow duct setup was used to measure the TBL wall pressure fluctuations. Then the modified inlet was successfully used to make similar measurements up to Mach number of 0.6. These measurements will be used in the future to validate wall pressure spectrum models for interior noise analysis programs such as statistical energy analysis (SEA) and dynamic energy analysis (DEA).
2011-05-17
Technical Paper
2011-01-1619
Shi Zheng, Chris Kleinfeld
This paper presents a hybrid method that predicts the whistle occurrence of an automotive exhaust tuning device. The method utilizes inputs from a limited amount of test work or numerical simulation to predict the whistle occurrence in a wider range of flow conditions (temperature and velocity). It has the advantages of being quick and low cost compared with extensive tests or the computational fluid dynamics approach.
2011-05-17
Technical Paper
2011-01-1618
George Chaoying Peng
Automotive manufactures demand early assessment of vehicle form design against wind noise attribute to eliminate any engineering waste induced by late design changes. To achieve such an assessment, it is necessary to determine a measurable quantity which is able to represent vehicle form changes, and to understand the relationship between the quantity and vehicle interior cabin noise. This paper reports experimental measurements of vehicle exterior surface pressure and the interior cabin noise level in response to the change of exterior rear view mirror shape. Measurements show that exterior surface pressure on vehicle greenhouse panel is a primary factor of wind noise load to the interior cabin noise; they can be used in preliminary wind noise ranking. Care should be taken when using them in ranking vehicle form wind noise performance. It has been observed that a change in surface pressure on the front side window does not necessarily lead to a change in the interior cabin noise.
2011-05-17
Technical Paper
2011-01-1639
Jan Krueger, Michael Pommerer, Tom Frei
In the past years Eberspaecher has installed Active Exhaust Silencers on several passenger vehicles with different diesel and gasoline engines on a prototype level. Meanwhile, a substantial reduction of the exhaust noise is regularly achieved in a broad frequency range covering all relevant engine orders. Due to the higher acoustic excitation and higher exhaust temperatures in gasoline engines it is more difficult to implement the ANC-technology on those engines. However, results from roller test benches focus on the acoustic performance as well as weight and volume reductions and demonstrate a marked improvement which was achieved with gasoline engines too. Further progress was made in the development of the durability and industrialization of all relevant components of the system. Finally, current design trends and possible fields of application will be discussed.
2011-05-17
Technical Paper
2011-01-1640
Daniel J. Maguire PhD, Kathleen Reilly, Christian Carme PhD
Active noise control (ANC) has been established as an effective way of addressing low frequency tonal noise in a weight-effective manner. The noise signature of a diesel locomotive cabin suggests that it is a good candidate for ANC. While often true, the production integration of ANC in a working locomotive has challenges extending well beyond laboratory demonstrations. This paper describes an ANC product developed as an aftermarket treatment for a particular model of fleet locomotive including locomotive passive treatment needs, control methods motivated by cabin acoustics, space and safety requirements, as well as logistical demands for testing and deployment.
2011-05-17
Journal Article
2011-01-1635
Mingfeng Li, Jie Duan, Teik Lim
Gears are essential parts of many precision power and torque transmitting machines. However, the radiated intensive tonal noise due to the gear meshing is highly undesirable and annoying. In very severe cases, the gear vibrations can reduce the life and performance of the power transmitting components. Typical gearbox vibration and sound spectra contain several dominant narrowband tonal signals that are mixed in with a lower level broadband response signals. Hence, the control of mesh response of gearbox housing belongs to the problem of the rejection or cancellation of periodical disturbance. The frequencies of these tonal signals are related to the number of teeth and rotation speed, and highly predictable. Thus, a feedforward control system was normally adopted. In most of existed applications, an accurate reference based on the frequency information of tachometer pulse train signal is required for this kind of control system.
2011-05-17
Technical Paper
2011-01-1636
Chiharu Togashi PhD, Mitsuo Nakano PhD, Masao Nagai PhD
A lot of countermeasures have been developed in order to reduce interior noise. For example, improvements of rubber mount characteristics and other measures have been implemented. Recently electromagnetic active engine mounts based on a hydraulic engine mount have been developed. They are significantly effective for the reduction of the booming noise which is unpleasant for passengers. Although the LMS algorithm has been generally used for the active control, it has been used only for reducing booming noise. The authors developed a new control method in order to reduce not only the booming noise but also the noise and the vibration over wide frequency band for comfortable vehicle interior space. The authors studied the method which determines the feedback gain according to various conditions by modifying LMS algorithm. In this modified LMS algorithm, only an error signal was used as an input signal.
2011-05-17
Technical Paper
2011-01-1637
Ahad Khezerloo, Amin owhadi Esfahani PhD, Sina Jalily lng
One of important problems in railway transportation systems is control of noise and vibration. Metal foams are very good medias for absorbing noise. So in this paper, noise of motion of a train is simulated by MATLAB software and the reduction of noise level in a compartment of passenger car that is equipped by metal foam sheets is considered. Commonly, the sound absorption coefficients are obtained experimentally and they are available in datasheets and references. The different parameters that influence on the capability of this equipment were considered. For example the microstructure, thickness, magnitude of compaction, relative density and etc of metal foam is effective parameters. High porosity has good effect on the performance of absorber sheet. By increasing of compaction ratio, in frequency domain we will have enhancing of absorption of the noise. Compaction process is done by two different ways: one is direct and else is progressively.
2011-05-17
Technical Paper
2011-01-1565
Jennifer Durfy, Sang-Bum Hong, Bibhu Mahanta
As fuel prices continue to be unstable the drive towards more fuel efficient powertrains is increasing. For engine original equipment manufacturers (OEMs) this means engine downsizing coupled with alternative forms of power to create hybrid systems. Understanding the effect of engine downsizing on vehicle interior NVH is critical in the development of such systems. The objective of this work was to develop a vehicle model that could be used with analytical engine mount force data to predict the vehicle interior noise and vibration response. The approach used was based on the assumption that the largest contributor to interior noise and vibration below 200 Hz is dominated by engine mount forces. An experimental transfer path analysis on a Dodge Ram 2500 equipped with a Cummins ISB 6.7L engine was used to create the vehicle model. The vehicle model consisted of the engine mount forces and vehicle paths that define the interior noise and vibration.
2011-05-17
Technical Paper
2011-01-1564
Tony Karlsson, Ragnar Glav
Simulation using basic acoustic 2-port elements is a time effective method for prediction of the attenuation of single components as well as of complete exhaust aftertreatment and silencer systems. However, with the complexity of current systems, the transformation from design geometries to networks of basic elements is not straightforward. In this paper a practical example of the modelling of a modern exhaust aftertreatment system is presented. A silencer aimed at the Euro 6 heavy duty emissions legislation containing complex flow turnings, parallel branches, DOC (Diesel Oxidation Catalyst), DPF (Diesel Particulate Filter) and SCR (Selective Catalytic Reduction) catalysts was modelled. Evaluation against measurements in order to understand the influence of the different acoustic elements upon overall attenuation and to improve the model with respect to near field and higher order mode effects was done.
2011-05-17
Technical Paper
2011-01-1563
Ki-Hwa Lee, Chung-Guen Nam, Hyung-Shin KIm, Dong-Kyu Yoo, Koo-Tae Kang
A comprehensive investigation was carried out in order to develop the idle sound quality for diesel V6 engine when the engine development process is applied to power-train system, which included new 8-speed automatic transmission for breaking down the noise contribution between the mechanical excitation and the combustion excitation. First of all, the improvement of dynamic characteristic can be achieved during the early stages of the engine development process using experimental modal analysis (EMA) & the robust design of each engine functional system. In addition, the engine structural attenuation (SA) is enhanced such that the radiated combustion noise of the engine can be maintained at a target level even with an increased combustion excitation. It was found that the engine system has better parts and worse parts in frequency range throughout the SA analysis. It is important that weak points in the system should be optimized.
2011-05-17
Journal Article
2011-01-1562
Tamer Elnady, Sara Elsaadany, D. W. Herrin
Diesel engines produce harmful exhaust emissions and high exhaust noise levels. One way of mitigating both exhaust emissions and noise is via the use of after treatment devices such as Catalytic Converters (CC), Selective Catalytic Reducers (SCR), Diesel Oxidation Catalysts (DOC), and Diesel Particulate Filters (DPF). The objective of this investigation is to characterize and simulate the acoustic performance of different types of filters so that maximum benefit can be achieved. A number of after treatment device configurations for trucks were selected and measured. A measurement campaign was conducted to characterize the two-port transfer matrix of these devices. The simulation was performed using the two-port theory where the two-port models are limited to the plane wave range in the filter cavity.
2011-05-17
Technical Paper
2011-01-1566
Thomas Reinhart, Mitchel Smolik
Several new or significantly upgraded heavy duty truck engines are being introduced in the North American market. One important aspect of these new or revised engines is their noise characteristics. This paper describes the noise related characteristics of the new DD15 engine, and compares them to other competitive heavy truck engines. DD15 engine features relevant to noise include a rear gear train, isolated oil pan and valve cover, and an amplified high pressure common rail fuel system. The transition between non-amplified and amplified common rail operation is shown to have a significant noise impact, not unlike the transition between pilot injection and single shot injection in some other engines.
2011-05-17
Technical Paper
2011-01-1586
Malika Perera, Stephanos Theodossiades, Homer Rahnejat, Patrick Kelly
Modern automotive industry is driven by improved fuel efficiency, whilst simultaneously increasing output power and reducing size/weight of vehicle components. This trend has the drawback of inducing various Noise, Vibration and Harshness (NVH) concerns in the drivetrain, since fairly low energy excitation often suffices to excite natural modes of thin walled structures, such as the transmission bell housing. Transmission rattle is one of the many undesired NVH issues, originating from irregularities in engine torque output. The crankshaft speed fluctuations are transferred through the transmission input shaft. Transmission compactness also allows repetitive interaction of conjugate loose gear pairs. The engine fluctuations disturb the otherwise unintended, but orderly meshing of these loose gears. This often leads to radiation of a characteristic air-borne noise from the impact sites.
2011-05-17
Technical Paper
2011-01-1591
Kumbhar S. Mansinh, Atul Miskin, Vishal Vasantrao Chaudhari, Ashish Rajput
The noise and vibration performance of diesel fueled automotives is critical for overall customer comfort. The stationary vehicle with engine running idle (Vehicle Idle) is a very common operating condition in city driving cycle. Hence it is most common comfort assessment criteria for diesel vehicles. Simulations and optimization of it in an early stage of product development cycle is priority for all OEMs. In vehicle idle condition, powertrain is the only major source of Noise and Vibrations. The key to First Time Right Idle NVH simulations and optimization remains being able to optimize all Transfer paths, from powertrain mounts to Driver Ear. This Paper talks about the approach established for simulations and optimization of powertrain forces entering in to frame by optimizing powertrain mount hard points and stiffness. Powertrain forces optimized through set process are further used to predict the vehicle passenger compartment noise and steering vibrations.
Viewing 1 to 30 of 78097

Filter

  • Range:
    to:
  • Year: