Refine Your Search

Search Results

Viewing 1 to 5 of 5
Technical Paper

Audi Aero-Acoustic Wind Tunnel

1993-03-01
930300
The present paper reveals the design concept as well as results of experimental investigations, which were conducted in the early design stage of the planned AUDI Aero-Acoustic Wind Tunnel. This low-noise open-jet facility, featuring a nozzle exit area of 11 m2 and a top speed of approximately 60 m/s, enables aerodynamic as well as acoustic testing of both, full-scale and model-scale ground vehicles. Ground simulation is provided by means of a moving-belt rig. The surrounding plenum is designed as a semi-anechoic chamber to simulate acoustic free-field conditions around the vehicle. Fan noise will be attenuated below the noise level of the open jet. The work reported herein, comprises 1/8-scale pilot-tunnel experiments of aerodynamic and acoustic configurations which were carried out at the University of Darmstadt.
Technical Paper

Cockpit Module Analysis Using Poroelastic Finite Elements

2014-06-30
2014-01-2078
Strategies for weight reduction have driven the noise treatment advanced developments with a great success considering the already mastered weight decreases observed in the last years in the automotive industry. This is typically the case for all soft trims parts. In the early 2010's a typical european B-segment car soft trims weights indeed 30 to 40% less than in the early 2000's years. The main driver behind such a gap has been to combine insulation and absorption properties on a single part while increasing the number of layers. This product-process evolution was conducted using a significant improvement in the simulation capacities. In that sense, several studies presenting very good correlation results between Transmission Loss measurements and finite elements simulations on dashboard or floor insulators were presented. One may consider that those kinds of parts have already achieved a considerable improvement in performance.
Journal Article

Dedicated GTL Vehicle: A Calibration Optimization Study

2010-04-12
2010-01-0737
GTL (Gas-To-Liquid) fuel is well known to improve tailpipe emissions when fuelling a conventional diesel vehicle, that is, one optimized to conventional fuel. This investigation assesses the additional potential for GTL fuel in a GTL-dedicated vehicle. This potential for GTL fuel was quantified in an EU 4 6-cylinder serial production engine. In the first stage, a comparison of engine performance was made of GTL fuel against conventional diesel, using identical engine calibrations. Next, adaptations enabled the full potential of GTL fuel within a dedicated calibration to be assessed. For this stage, two optimization goals were investigated: - Minimization of NOx emissions and - Minimization of fuel consumption. For each optimization the boundary condition was that emissions should be within the EU5 level. An additional constraint on the latter strategy required noise levels to remain within the baseline reference.
Technical Paper

On the Application of Classical Wind Tunnel Corrections for Automotive Bodies

2001-03-05
2001-01-0633
The classical theory of wind tunnel corrections calculated from potential flow theory is revisited. In this context a flow model uniformly valid for all types of test sections is developed for the correction of drag in automotive wind tunnels. To define and size the singularities setting up the flow model only geometrical properties of the model and measured force coefficients will be used. To achieve a correct representation of the flow about a vehicle body a number of improvements to the classical approach are proposed. Based on the uniformly valid flow model, correction formulae for closed wall, open jet and slotted wall test sections are given. For the open jet and slotted wall case it is shown, that the presented formulae are still incomplete, whereas for the closed wall case the correction is ready to use. The correction approach is validated step by step by comparison with appropriate experimental data.
Technical Paper

Production of Autobody Components with Hydromechanical Sheet Forming (AHU®)

2002-07-09
2002-01-2026
The lightweight construction strategies that are demanded by the automobile industry are being employed more and more. These strategies lead to the increasing importance of the forming method and types of materials used. Especially forming technologies based on liquid media have the potential to meet these demands. These forming technologies make it possible to produce parts that have both, more complex geometries and optimized characteristics. This forming technology constitutes an intelligent process management including the significant materials parameters and behavior, the simulation and some new developments especially for the optimization of the quality and the cycle time. Hydromechanical sheet forming (AHU®) is an alternative production (forming) process, with very interesting results and developments for the manufacture of specific automobile components.
X