Refine Your Search

Topic

Author

Search Results

Technical Paper

360° vs. 270° vs. 180°: The Difference of Balancing a 2 Cylinder Inline Engine: Design, Simulation, Comparative Measurements

2012-10-23
2012-32-0106
Beside the automotive industry, where 2-cylinder inline engines are catching attention again, twin-cylinder configurations are quite usual in the small engine world. From stationary engines and range-extender use to small motorcycles up to big cruisers and K-Cars this engine architecture is used in many types of applications. Because of very good overall packaging, performance characteristics and not least the possibility of parts-commonality with 4-cylinder engines nearly every motorcycle manufacturer provides an inline twin in its model range. Especially for motorcycle applications where generally the engine is a rigid member of the frame and vibrations can be transferred directly to the rider an appropriate balancing system is required.
Journal Article

A Hybrid Development Process for NVH Optimization and Sound Engineering Considering the Future Pass-by Homologation Demands

2016-11-08
2016-32-0043
Beside hard facts as performance, emissions and fuel consumption especially the brand specific attributes such as styling and sound are very emotional, unique selling prepositions. To develop these emotional characters, within the given boundary conditions of the future pass-by regulation, it is necessary to define them at the very beginning of the project and to follow a consequent development process. The following paper shows examples of motorcycle NVH development work on noise cleaning and sound engineering using a hybrid development process combining front loading, simulation and testing. One of the discussed solutions is the investigation of a piston pin offset in combination with a crankshaft offset for the reduction of friction. The optimization of piston slap noise as a result of the piston secondary motion was performed by simulation. As another example a simulation based development was performed for the exhaust system layout.
Technical Paper

A Software Tool for Noise Quality and Brand Sound Development

2001-04-30
2001-01-1573
For noise quality and brand sound design of passenger cars a unique software tool is currently used by our clients world-wide to evaluate and optimise the interior noise quality and brand sound aspects of passenger cars on an objective basis. The software tools AVL-VOICE and AVL-COMFORT are designed for the objective analysis of interior noise quality, for benchmarking, for the definition of noise quality targets and most important for effective vehicle sound engineering. With this tool, the target orientated implementation of the required interior noise quality or brand sound by predictable hardware modifications into passenger cars - for tailor made joy of driving - becomes feasible. The use of this tools is drastically reducing vehicle evaluation time and sound engineering effort when compared with traditional jury subjective evaluation methods and standard acoustic NVH optimisation procedures.
Technical Paper

Active Path Tracking - A Rapid Method for the Identification of Structure Borne Noise Paths in Vehicle Chassis

2001-04-30
2001-01-1470
The effective identification and control of powertrain structure borne harmonic noise is one key for achieving the desired noise pattern in a vehicle. Much work is being done in this field to refine and develop transfer path analysis techniques suitable for application at each stage of a vehicle development program. For vehicle application, transfer path analysis and source identification techniques are in use today with varying degrees of success and application complexity. Investigation tools which are fast, do not require extensive vehicle dismantling and yet provide reliable answers, are of great value to NVH and sound quality engineers. A novel Active Path Tracking (APT) method has been developed which is fast to apply and offers immediate practical confirmation of the contributions of all identified chassis transmission paths to the vehicle interior.
Technical Paper

Analytical Techniques for Engine Structure Using Prediction of Radiated Noise of Diesel Engine with Changing Combustion Excitation

2017-06-05
2017-01-1802
In the automotive industry, various simulation-based analysis methods have been suggested and applied to reduce the time and cost required to develop the engine structure to improve the NVH performance of powertrain. This simulation is helpful to set the engine design concept in the initial phase of the powertrain development schedules. However, when using the conventional simulation method with a uniformed force, the simulation results sometimes show different results than the test results. Therefore, in this paper, we propose a method for predicting the radiated noise level of a diesel engine using actual combustion excitation force. Based on the analytical radiated noise development target, we identify the major components of the engine that are beyond this development target by in the frequency range. The components of the problem found in this way are reflected in the engine design of the early development stage to shorten the development time.
Journal Article

CO2 Reduction Potential through Improved Mechanical Efficiency of the Internal Combustion Engine: Technology Survey and Cost-Benefit Analysis

2013-04-08
2013-01-1740
The need for significant reduction of fuel consumption and CO₂ emissions has become the major driver for development of new vehicle powertrains today. For the medium term, the majority of new vehicles will retain an internal combustion engine (ICE) in some form. The ICE may be the sole prime mover, part of a hybrid powertrain or even a range extender; in every case potential still exists for improvement in mechanical efficiency of the engine itself, through reduction of friction and of parasitic losses for auxiliary components. A comprehensive approach to mechanical efficiency starts with an analysis of the main contributions to engine friction, based on a measurement database of a wide range of production engines. Thus the areas with the highest potential for improvement are identified. For each area, different measures for friction reduction may be applicable with differing benefits.
Technical Paper

Development of New I3 1.0L Turbocharged DI Gasoline Engine

2017-10-08
2017-01-2424
In recent years, more attentions have been paid to stringent legislations on fuel consumption and emissions. Turbocharged downsized gasoline direct injection (DI) engines are playing an increasing important role in OEM’s powertrain strategies and engine product portfolio. Dongfeng Motor (DFM) has developed a new 1.0 liter 3-cylinder Turbocharged gasoline DI (TGDI) engine (hereinafter referred to as C10TD) to meet the requirements of China 4th stage fuel consumption regulations and the China 6 emission standards. In this paper, the concept of the C10TD engine is explained to meet the powerful performance (torque 190Nm/1500-4500rpm and power 95kW/5500rpm), excellent part-load BSFC and NVH targets to ensure the drivers could enjoy the powerful output in quiet and comfortable environment without concerns about the fuel cost and pollution.
Technical Paper

Dynamic Substructuring for Sources Contributions Analysis in Internal Combustion Engines

2016-06-15
2016-01-1761
For vibration and acoustics vehicle development, one of the main challenges is the identification and the analysis of the noise sources, which is required in order to increase the driving comfort and to meet the stringent legislative requirements for the vehicle noise emission. Transfer Path Analysis (TPA) is a fairly well established technique for estimating and ranking individual low-frequency noise or vibration contributions via the different transmission paths. This technique is commonly applied on test measurements, based on prototypes, at the end of the design process. In order to apply such methodology already within the design process, a contribution analysis method based on dynamic substructuring of a multibody system is proposed with the aim of improving the quality of the design process for vehicle NVH assessment and to shorten development time and cost.
Technical Paper

Effects of Pulsating Flow on Exhaust Port Flow Coefficients

1999-03-01
1999-01-0214
Five very different exhaust ports of diesel and gasoline engines are investigated under steady and unsteady flow to determine whether their flow coefficients are sensitive to unsteady flow. Valve lift is fixed for a specific test but varied from test to test to determine whether the relationship between steady and unsteady flow is lift dependent. The pulse frequency is chosen to correspond to the blow-down phase of an engine running at approximately 6000 rpm, but the pressure drop across the port is much smaller than that present in a running engine. Air at room temperature is used as the working fluid. It is shown that unsteady flow through the five exhaust ports causes, at most, a 6% increase or a 7% decrease in flow coefficient.
Technical Paper

Experimental Design for Characterization of Force Transmissibility through Bearings in Electric Machines and Transmissions

2018-06-13
2018-01-1473
With the increasing stringent emissions legislation on ICEs, alongside requirements for enhanced fuel efficiency as key driving factors for many OEMs, there are many research activities supported by the automotive industry that focus on the development of hybrid and pure EVs. This change in direction from engine downsizing to the use of electric motors presents many new challenges concerning NVH performance, durability and component life. This paper presents the development of experimental methodology into the measurement of NVH characteristics in these new powertrains, thus characterizing the structure borne noise transmissibility through the shaft and the bearing to the housing. A feasibility study and design of a new system level test rig have been conducted to allow for sinusoidal radial loading of the shaft, which is synchronized with the shaft’s rotary frequency under high-speed transient conditions in order to evaluate the phenomena in the system.
Technical Paper

Gear Whine Noise Investigation of a Bus Rear Axle - Todays Possibilities and Outlook

2017-06-05
2017-01-1820
This paper presents a simulation environment and methodology for noise and vibration analyses of a driven rear axle in a bus application, with particular focus on medium to high frequency range (400 Hz to 3 kHz). The workflow demonstrates structure borne noise and sound radiation analyses. The fully flexible Multi-Body Dynamics (MBD) model - serving to cover the actual mechanical excitation mechanisms and the structural domain - includes geometrical contacts of hypoid gear in the central gear and planetary gear integrated at hubs, considering non-linear meshing stiffness. Contribution of aforementioned gear stages, as well as the propeller shaft universal joint at the pinion axle, on overall axle noise levels is investigated by means of sensitivity analysis. Based on the surface velocities computed at the vibrating axle-housing structure the Wave Based Technique (WBT) is employed to solve the airborne noise problem and predict the radiated sound.
Technical Paper

Influence of Low-Frequency Powertrain-Vibrations on Driveability-Assessments

2010-06-09
2010-01-1419
Cost- and time-efficient vehicle development is increasingly depending on the usage of adequate software tools to enhance effectiveness. The aim is a continuous integration of simulation tools and test environments within the vehicle development process in order to save time and costs. This paper introduces a procedure to reveal the cause of low-frequency powertrain vibrations and the influences on the dynamic behavior of a vehicle on a roller test bench. The affected longitudinal acceleration signal is an arbitrative criterion for the driveability assessment with AVL-DRIVE™, a well-known driveability analysis and development tool for the objective assessment concerning NVH and driveability aspects of full vehicles. These experimental studies are embedded into an approach, which describes the functional assembly of three applied test environments "road," "roller test bench" and "simulation" with according tools in order to facilitate an integrated driveability development process.
Journal Article

Integrated 1D/2D/3D Simulation of Fuel Injection and Nozzle Cavitation

2013-09-08
2013-24-0006
To promote advanced combustion strategies complying with stringent emission regulations of CI engines, computational models have to accurately predict the injector inner flow and cavitation development in the nozzle. This paper describes a coupled 1D/2D/3D modeling technique for the simulation of fuel flow and nozzle cavitation in diesel injection systems. The new technique comprises 1D fuel flow, 2D multi-body dynamics and 3D modeling of nozzle inner flow using a multi-fluid method. The 1D/2D model of the common rail injector is created with AVL software Boost-Hydsim. The computational mesh including the nozzle sac with spray holes is generated with AVL meshing tool Fame. 3D multi-phase calculations are performed with AVL software FIRE. The co-simulation procedure is controlled by Boost-Hydsim. Initially Hydsim performs a standalone 1D simulation until the needle lift reaches a prescribed tolerance (typically 2 to 5 μm).
Technical Paper

Low Frequency Impedance Spectroscopy – Modeling Study on the Transferability of Solid Diffusion Coefficients

2023-04-11
2023-01-0505
This work elaborates the transferability of electrode diffusion coefficients gained from fitting procedures in frequency domain to an electrochemical battery model run in time domain. An electrochemical battery model of an NMC622 half-cell electrode is simulated with sinusoidal current excitations at different frequencies. The current and voltage signals are analyzed in frequency domain via Nyquist and Bode plots. The frequency domain analysis of time domain simulations is applied to assess the numerical convergence of the simulation and the sensitivity on particle diameter, electrode and electrolyte diffusion coefficients. The simulated frequency spectra are used to fit the electrode diffusion coefficient by means of different electrical equivalent circuit models and the electrochemical battery model itself. The fitted diffusion coefficients from the different electrical equivalent circuit models deviate by one order of magnitude from the a priori known reference data.
Technical Paper

Lubrication Testing Methodology for Vehicle Class and Usage Based Validation

2022-08-30
2022-01-1101
System lubrication in automotive powertrains is a growing topic for development engineers. Hybrid and pure combustion system complexity increases in search of improved efficiency and better control strategy, increasing the number of components with lubrication demand and the interplay between them, while fully electric systems drive for higher input speeds to increase e-motor efficiency, increasing bearing and gear feed rate demands. Added to this, many e-axle and hybrid systems are in development with a shared medium and circuit for e-motor cooling and transmission lubrication. Through all this, the lubricant forms a common thread and is a fundamental component in the system, but no standardized tests can provide a suitable methodology to investigate the adequate lubrication of components at powertrain level, to support the final planned vehicle usage.
Technical Paper

Metrics based design of electromechanical coupled reduced order model of an electric powertrain for NVH assessment

2024-06-12
2024-01-2913
Electric vehicles offer cleaner transportation with lower emissions, thus their increased popularity. Although, electric powertrains contribute to quieter vehicles, the shift from internal combustion engines to electric powertrains presents new Noise, Vibration, and Harshness challenges. Unlike traditional engines, electric powertrains produce distinctive tonal noise, notably from motor whistles and gear whine. These tonal components have frequency content, sometimes above 10 kHz. Furthermore, the housing of the powertrain is the interface between the excitation from the driveline via the bearings and the radiated noise (NVH). Acoustic features of the radiated noise can be predicted by utilising the transmitted forces from the bearings. Due to tonal components at higher frequencies and dense modal content, full flexible multibody dynamics simulations are computationally expensive.
Technical Paper

Multi-body Dynamics Based Gear Mesh Models for Prediction of Gear Dynamics and Transmission Error

2010-04-12
2010-01-0897
Gear trains applied to automotive transmissions and combustion engines are potential excitation sources of undesired whine noise. Consequently, the prediction of gear whine issues in an early stage of the product development process is strongly requested. Beside the actual excitation mechanism which is closely related to the gear's transmission error, the vibratory behavior (e.g. resonances) of other affected components like shafts, bearings and housing plays an important role in terms of structure borne noise transfer. The paper deals with gear contact models of different degree of detail, which are embedded in a multi-body dynamics (MBD) environment. Since gear meshing frequency and their harmonics may easily reach up to 5 kHz or even 10 kHz, applied gear contact models must be highly efficient with respect to calculation performance. Otherwise, major requirements of the development process in terms of process time can not be satisfied as is the case with FEA-based contact models.
Journal Article

NVH Challenges and Solutions for Vehicles with Low CO2 Emission

2012-06-13
2012-01-1532
Driven by worldwide climate change, governments are introducing more stringent emission regulations with particular focus on fuel saving for CO₂ emission reduction. Downsizing and weight reduction are two of the main drivers to achieve these demanding regulations. Both aspects however might have a strong negative effect on the overall vehicle NVH behavior. Weight reduction directly influences NVH due to reduction of absorption and damping material and due to light-weight design affecting the dynamic responses of powertrain and vehicle structures. Engine downsizing however has multiple negative effects on NVH. Beside higher vibrations and speed irregularities due to lower cylinder numbers and displacements also reduction of sound quality is a critical topic that will be handled within this publication.
Journal Article

NVH of Electric Vehicles with Range Extender

2010-06-09
2010-01-1404
Intensive R&D is currently performed worldwide on hybrid and electric vehicles. For full electric vehicles the driving range is limited by the capacity of currently available batteries. If such a vehicle shall increase its driving range some range extending backup system should be available. Such a Range Extender is a small system of combustion engine and electric generator which produces the required electricity for charging the batteries in time. Since the acoustic response of an electric motor driving the vehicle and of a combustion engine as part of a Range Extender is very different by nature an extensive acoustic tuning of the Range Extender is necessary to meet the requirements of exterior vehicle noise and passenger comfort. This paper describes the NVH (noise, vibration & harshness) development work of a range extender within the AVL approach of an electrically driven passenger car with range extender.
Technical Paper

New Kinematic Design Methodology and Dynamic Simulation of Continuously Variable Valve Lift (CVVL) System

2010-04-12
2010-01-1202
Mechanical variable valve systems are being increasingly used for modern combustion engines. It is typical for such systems that the cam and valve are connected via intermediate levers. Different maximum valve lifts and duration can be achieved with the same cam profile. The intermediate levers increase the system inertia and reduce the overall stiffness. Such systems offer more flexibility, but it is more complex to create optimal design compared to the conventional systems. In this paper a new kinematic design methodology for a CVVL (Continuously Variable Valve Lift) system is presented. Additionally, dynamic analysis of the valve train system is performed. The investigated valve train is completely developed and patented by OEM. The main characteristic of the CVVL system is a set of intermediate levers between the cam and the finger follower like ( 1 , 2 ). One cam drives two intake valves over a set of levers.
X