Refine Your Search

Topic

Author

Search Results

Journal Article

7-XDCT: Compact and Cost-Efficient Dual Clutch Transmission for Small and Mid-Size Vehicles

2013-04-08
2013-01-1271
The automotive industry continues to develop new powertrain technologies aimed at reducing overall vehicle level fuel consumption. The ongoing trends of “downsizing” and “down speeding” have led to the development of turbocharged engines with low displacement and high torque density. In order to meet the launch response requirements with these engines as well as fuel economy needs, transmissions with large ratio spreads will need to be developed. Due to the lack of torque amplification from the torque converter, the next generation of dual clutch transmissions (DCT) will need to have larger launch ratios and ratio spreads than currently available in production today. This paper discusses the development of a new family of DCT (called “xDCT”) for use in front wheel drive vehicles, aimed at meeting some of these challenges. The xDCT family features two innovative concepts, the idea of “gear generation” and “supported shifts”.
Technical Paper

A Low NVH Range-Extender Application with a Small V-2 Engine - Based on a New Vibration Compensation System

2012-10-23
2012-32-0081
The interest in electric propulsion of vehicles has increased in recent years and is being discussed extensively by experts as well as the public. Up to now the driving range and the utilization of pure electric vehicles are still limited in comparison to conventional vehicles due to the limited capacity and the long charging times of today's batteries. This is a challenge to customer acceptance of a pure electric vehicle, even for a city car application. A Range Extender concept could achieve the desired customer acceptance, but should not impact the “electric driving” experience, and should not cause further significant increases in the manufacturing and purchasing cost. The V2 engine concept presented in this paper is particularly suited to a low cost, modular vehicle concept. Advantages regarding packaging can be realized with the use of two generators in combination with the V2 engine.
Technical Paper

A Multi-Cylinder Airflow & Residual Gas Estimation Tool Applied to a Vehicle Demonstrator

2010-04-12
2010-01-0169
In a gasoline engine, the cycle-by-cycle fresh trapped charge, and corresponding unswept residual gas fraction (RGF) are critical parameters of interest for maintaining the desired air-fuel ratio (AFR). Accurate fueling is a key precursor to improved engine fuel economy, and reduced engine out emissions. Asymmetric flow paths to cylinders in certain engines can cause differences in the gas exchange process, which in turn cause imbalances in trapped fresh charge and RGF. Variable cam timing (VCT) can make the gas exchange process even more complex. Due to the reasons stated above, simplified models can result in significant estimation errors for fresh trapped charge and RGF if they are not gas dynamics-based or detailed enough to handle features such as variable valve timing, duration, or lift. In this paper, a new air flow and RGF measurement tool is introduced.
Technical Paper

A holistic Development Method Based on AVL FRISC as Enabler for CO2 Reduction with Focus on Low Viscosity Oils

2020-04-14
2020-01-1060
To achieve future fleet CO2 emission targets, all powertrain types, including those with internal combustion engines, need to achieve higher efficiency. Next to others the reduction of friction is one contributor to increase powertrain efficiency. The piston bore interface (PBI) accounts for up to 50 % of the total engine friction losses [1]. Optimizations in this area combined with the use of low viscosity oil, which can reduce the friction of further engine sub-systems, will therefore have a high positive impact. To assess the friction of the PBI whilst considering cross effects of other relevant parameters for mechanical function (e.g. blow-by & wear) and emissions (e.g. oil consumption) AVL has established a holistic development method based around the AVL FRISC (FRIction Single Cylinder) engine with a floating liner measurement concept.
Technical Paper

An Experimental Study of Injection and Combustion with Dimethyl Ether

2015-04-14
2015-01-0932
DiMethyl Ether (DME) has been known to be an outstanding fuel for combustion in diesel cycle engines for nearly twenty years. DME has a vapour pressure of approximately 0.5MPa at ambient temperature (293K), thus it requires pressurized fuel systems to keep it in liquid state which are similar to those for Liquefied Petroleum Gas (mixtures of propane and butane). The high vapour pressure of DME permits the possibility to optimize the fuel injection characteristic of direct injection diesel engines in order to achieve a fast evaporation and mixing with the charged gas in the combustion chamber, even at moderate fuel injection pressures. To understand the interrelation between the fuel flow inside the nozzle spray holes tests were carried out using 2D optically accessed nozzles coupled with modelling approaches for the fuel flow, cavitation, evaporation and the gas dynamics of 2-phase (liquid and gas) flows.
Technical Paper

An Investigation into the Effect of Fuel Injection System Improvements on the Injection and Combustion of DiMethyl Ether in a Diesel Cycle Engine

2014-10-13
2014-01-2658
For nearly twenty years, DiMethyl Ether has been known to be an outstanding fuel for combustion in diesel cycle engines. Not only does it have a high Cetane number, it burns absolutely soot free and produces lower NOx exhaust emissions than the equivalent diesel. However, the physical properties of DME such as its low viscosity, lubricity and bulk modulus have negative effects for the fuel injection system, which have both limited the achievable injection pressures to about 500 bar and DME's introduction into the market. To overcome some of these effects, a common rail fuel injection system was adapted to operate with DME and produce injection pressures of up to 1000 bar. To understand the effect of the high injection pressure, tests were carried out using 2D optically accessed nozzles. This allowed the impact of the high vapour pressure of DME on the onset of cavitation in the nozzle hole to be assessed and improve the flow characteristics.
Technical Paper

Artificial Neural Network-Based Emission Control for Future ICE Concepts

2023-10-31
2023-01-1605
The internal combustion engine contains several actuators to control engine performance and emissions. These are controlled within the engine ECU and follow a specific operating strategy to achieve objectives such as NOx reduction and fuel economy. However, these two goals are conflicting and a compromise is required. The operating state depends on system constraints such as engine speed, load, temperature levels, and aftertreatment system efficiency. This results in constantly changing target values to stay within the defined limits, especially the legal emission limits. The conventional approach is to use multiple operating modes. Each mode represents a specific compromise and is activated accordingly. Multiple modes are required to meet emissions regulations under all required conditions, which increases the calibration effort. This new control approach uses an artificial neural network to replace the conventional multiple mode approach.
Journal Article

Biodiesel Effects on U.S. Light-Duty Tier 2 Engine and Emission Control Systems - Part 2

2009-04-20
2009-01-0281
Raising interest in Diesel powered passenger cars in the United States in combination with the government mandated policy to reduce dependency of foreign oil, leads to the desire of operating Diesel vehicles with Biodiesel fuel blends. There is only limited information related to the impact of Biodiesel fuels on the performance of advanced emission control systems. In this project the implementation of a NOx storage and a SCR emission control system and the development for optimal performance are evaluated. The main focus remains on the discussion of the differences between the fuels which is done for the development as well as useful life aged components. From emission control standpoint only marginal effects could be observed as a result of the Biodiesel operation. The NOx storage catalyst results showed lower tailpipe emissions which were attributed to the lower exhaust temperature profile during the test cycle. The SCR catalyst tailpipe results were fuel neutral.
Technical Paper

Challenges and Solutions for Range Extenders - From Concept Considerations to Practical Experiences

2011-06-09
2011-37-0019
For a broad acceptance of electric vehicles, the trade-off between all electric range and battery cost respectively weight represents the most important challenge. The all electric range obtained under real world conditions most often deviates significantly from the nominal value which is measured under idealized conditions. Under extreme conditions - slow traffic and demanding requirements for cabin heating or cooling - the electrical range might become less a question of spatial distance but even more of total operation time. Whereas with conventional powertrain, high flexibility of the total driving range can be obtained without sacrificing cost, with a pure battery vehicle this results in extreme high cost and weight of the energy storage. Therefore the difference between the typical daily driving range (e.g. in Germany 80-90% is below 50 km) and the minimum total range requested by most customers for acceptance of battery vehicles (200- 250 km), becomes essential.
Journal Article

Definition of Gearshift Pattern: Innovative Optimization Procedures Using System Simulation

2011-04-12
2011-01-0395
Today's powertrains are becoming more and more complex due to the increasing number of gear box types requiring gearshift patterns like conventional (equipped with GSI) and automatic-manual transmissions (AT, AMT), double clutch and continuous variable transmissions (DCT, CVT). This increasing variety of gear boxes requires a higher effort for the overall optimization of the powertrain. At the same time, it is necessary to assess the impact of different powertrains and control strategies on CO₂ emissions very early in the development process. The optimization of Gear Shift Patterns (G.S.P.) has to fulfill multiple constraints in terms of objective customers' requirements, like driveability, NVH, performance, emissions and fuel consumption. For these reasons, RENAULT and AVL entered an engineering collaboration in order to develop a dedicated simulation tool: CRUISE GSP.
Technical Paper

Developing Drivetrain Robustness for Small Engine Testing

2013-04-08
2013-01-0400
The increased demand in fuel economy and the reduction of CO₂ emissions results in continued efforts to downsize engines. The downsizing efforts result in engines with lower displacement as well as lower number of cylinders. In addition to cylinder and displacement downsizing the development community embarks on continued efforts toward down-speeding. The combination of the aforementioned factors results in engines which can have high levels of torsional vibrations. Such behavior can have detrimental effects on the drivetrain particularly during the development phase of these. Driveshafts, couplings, and dynamometers are exposed to these torsional forces and depending on their frequency costly damages in these components can occur. To account for these effects, FEV employs a multi-body-system modeling approach through which base engine information is used to determine optimized drivetrain setups. All mechanical elements in the setup are analyzed based on their torsional behavior.
Technical Paper

Development of New I3 1.0L Turbocharged DI Gasoline Engine

2017-10-08
2017-01-2424
In recent years, more attentions have been paid to stringent legislations on fuel consumption and emissions. Turbocharged downsized gasoline direct injection (DI) engines are playing an increasing important role in OEM’s powertrain strategies and engine product portfolio. Dongfeng Motor (DFM) has developed a new 1.0 liter 3-cylinder Turbocharged gasoline DI (TGDI) engine (hereinafter referred to as C10TD) to meet the requirements of China 4th stage fuel consumption regulations and the China 6 emission standards. In this paper, the concept of the C10TD engine is explained to meet the powerful performance (torque 190Nm/1500-4500rpm and power 95kW/5500rpm), excellent part-load BSFC and NVH targets to ensure the drivers could enjoy the powerful output in quiet and comfortable environment without concerns about the fuel cost and pollution.
Journal Article

Effects of Biodiesel Operation on Light-Duty Tier 2 Engine and Emission Control Systems

2008-04-14
2008-01-0080
Due to raising interest in diesel powered passenger cars in the U.S. in combination with a desire to reduce dependency on imported petroleum, there has been increased attention to the operation of diesel vehicles on fuels blended with biodiesel. One of several factors to be considered when operating a vehicle on biodiesel blends is understanding the impact and performance of the fuel on the emission control system. This paper documents the impact of the biodiesel blends on engine-out emissions as well as the overall system performance in terms of emission control system calibration and the overall system efficiency. The testing platform is a light-duty HSDI diesel engine with a Euro 4 base calibration in a 1700 kg sedan vehicle. It employs 2nd generation common-rail injection system with peak pressure of 1600 bar as well as cooled high-pressure EGR. The study includes 3 different fuels (U.S.
Technical Paper

Experimental Design for Characterization of Force Transmissibility through Bearings in Electric Machines and Transmissions

2018-06-13
2018-01-1473
With the increasing stringent emissions legislation on ICEs, alongside requirements for enhanced fuel efficiency as key driving factors for many OEMs, there are many research activities supported by the automotive industry that focus on the development of hybrid and pure EVs. This change in direction from engine downsizing to the use of electric motors presents many new challenges concerning NVH performance, durability and component life. This paper presents the development of experimental methodology into the measurement of NVH characteristics in these new powertrains, thus characterizing the structure borne noise transmissibility through the shaft and the bearing to the housing. A feasibility study and design of a new system level test rig have been conducted to allow for sinusoidal radial loading of the shaft, which is synchronized with the shaft’s rotary frequency under high-speed transient conditions in order to evaluate the phenomena in the system.
Technical Paper

Increased 2-Wheeler Development Efficiency by Using a New Dedicated Test System Solution

2019-01-09
2019-26-0348
Fuel consumption is the most important contributor to the total cost of ownership for mass produced motorcycles. Therefore, best fuel economy is one main influencing criteria for a decision to purchase motorcycles. Furthermore, increasingly stringent emission legislations limit and additional OBD requirements must be fulfilled. A new combined test approach has been developed that minimizes accuracy losses in the development process which compensates for the variability of driving behavior in the chassis dyno environment. An engine testbed combined with a belt drive transmission enables operation in single engine or in Powerpack (i.e. internal combustion engine including transmission) configuration as well as under steady state or dynamic operating mode. Since the belt drive transmission is integrated in the test rig, realistic inertia situation for the single engine operating test configuration is ensured.
Journal Article

Integration of Engine Start/Stop Systems with Emphasis on NVH and Launch Behavior

2013-05-13
2013-01-1899
Automatic engine start/stop systems are becoming more prevalent and increasing market share of these systems is predicted due to demands on improving fuel efficiency of vehicles. Integration of an engine start/stop system into a “conventional” drivetrain with internal combustion engine and 12V board system is a relatively cost effective measure to reduce fuel consumption. Comfort and NVH aspects will continue to play an important role for customer acceptance of these systems. Possible delay during vehicle launch due to the engine re-start is not only a safety relevant issue but a hesitating launch feel characteristic will result in reduced customer acceptance of these systems. The engine stop and re-start behavior should be imperceptible to the driver from both a tactile and acoustic standpoint. The lack of masking effects of the engine during the engine stop phases can cause other “unwanted” noise to become noticeable or more prominent.
Technical Paper

Key Steps and Methods in the Design and Development of Low Noise Engines

1999-05-17
1999-01-1745
The next generation of automotive engines has to meet 2004 emission limits, ideally with improved fuel economy and with noise emission which is at least 3 dBA below the current status. Using both simulation and experimental analysis these challenging requirements can only be fulfilled by clearly defining all key steps in NVH development and by applying suitable technological methods. The development procedure discussed in this paper is characterised by several aspects: two stage prediction procedure fully integrated in the design process, combustion development with a definite focus on noise, a closed loop between simulation and test bed development and consideration of noise in the calibration of engine and drivetrain management systems. Apart from meeting target noise levels, noise quality is the reference parameter which is continuously evaluated by means of the AVL Annoyance Index.
Technical Paper

Measurement Approaches for Variable Compression Ratio Systems

2021-04-06
2021-01-0649
In the ongoing competition of powertrain concepts the Internal Combustion Engine (ICE) will also have to demonstrate its potential for increased efficiency [1]. Variable Compression Ratio (VCR) Systems for Internal Combustion Engines (ICE) can make an important contribution to meeting stringent global fuel economy and CO2 standards. Using such technology a CO2 reduction of between 5% and 9% in the World Harmonized Light-Duty Vehicle Test Cycle (WLTC) are achievable, depending on vehicle class, load profile and power rating [2]. This paper provides a detailed description of the measurement approaches that are used during development of the AVL Dual Mode VCSTM and other VCR systems in fired operation. Results obtained from these measurements are typically used to calibrate or verify simulation models, which themselves are an integral part of the development of these systems [3].
Technical Paper

Novel Shift Control without Clutch Slip in Hybrid Transmissions

2017-03-28
2017-01-1110
With the introduction of new regulations on emissions, fuel efficiency, driving cycles, etc. challenges for the powertrains are significantly increasing. In order to fulfil these regulations, hybrid-electric powertrains are an unquestioned option for short and long-term solutions. Hybridization however, is not only fulfilling these challenging efficiency or emission targets, but also allows numerous new possibilities on control strategies of different powertrain elements as well as new approaches of designing them. A good example is transmissions where, hybridization allows a new transmission type called Dedicated Hybrid Transmission (DHT), which enables to use novel control strategies bringing improved performance, driveability, durability and NVH behavior. This paper focuses on the novel shift strategy where friction clutches do not have to slip.
Technical Paper

Numerical and Experimental Analysis of Mixture Formation and Performance in a Direct Injection CNG Engine

2012-04-16
2012-01-0401
This paper presents the results of part of the research activity carried out by the Politecnico di Torino and AVL List GmbH as part of the European Community InGAS Collaborative Project. The work was aimed at developing a combustion system for a mono-fuel turbocharged CNG engine, with specific focus on performance, fuel economy and emissions. A numerical and experimental analysis of the jet development and mixture formation in an optically accessible, single cylinder engine is presented in the paper. The experimental investigations were performed at the AVL laboratories by means of the planar laser-induced fluorescence technique, and revealed a cycle-to-cycle jet shape variability that depended, amongst others, on the injector characteristics and in-cylinder backpressure. Moreover, the mixing mechanism had to be optimized over a wide range of operating conditions, under both stratified lean and homogeneous stoichiometric modes.
X