Refine Your Search

Topic

Author

Affiliation

Search Results

Technical Paper

2D Mapping and Quantification of the In-Cylinder Air/Fuel-Ratio in a GDI Engine by Means of LIF and Comparison to Simultaneous Results from 1D Raman Measurements

2001-05-07
2001-01-1977
The optimization of the vaporization and mixture formation process is of great importance for the development of modern gasoline direct injection (GDI) engines, because it influences the subsequent processes of the ignition, combustion and pollutant formation significantly. In consequence, the subject of this work was the development of a measurement technique based on the laser induced exciplex fluorescence (LIF), which allows the two dimensional visualization and quantification of the in-cylinder air/fuel ratio. A tracer concept consisting of benzene and triethylamine dissolved in a non-fluorescent base fuel has been used. The calibration of the equivalence ratio proportional LIF-signal was performed directly inside the engine, at a well known mixture composition, immediately before the direct injection measurements were started.
Technical Paper

A Modular Methodology for Complete Vehicle Thermal Management Simulations

2022-08-30
2022-01-5064
Vehicle thermal management (VTM) simulations are becoming increasingly important in the development phase of a vehicle. These simulations help in predicting the thermal profiles of critical components over a drive cycle. They are usually done using two methodologies: (1) Solving every aspect of the heat transfer, i.e., convection, radiation, and conduction, in a single solver (Conjugate Heat Transfer) or (2) Simulating convection using a fluid solver and computing the other two mechanisms using a separate thermal solver (Co-simulation). The first method is usually computationally intensive, while the second one isn’t. This is because Co-simulation reduces the load of simulating all heat transfer mechanisms in a single code. This is one of the reasons why the Co-simulation method is widely used in the automotive industry. Traditionally, the methods developed for Co-simulation processes are load case specific.
Technical Paper

A New 3D Model For Vaporizing Diesel Sprays Based on Mixing-Limited Vaporization

2000-03-06
2000-01-0949
Results from numerical computations performed to represent the transient behavior of vaporizing sprays injected into a constant volume chamber and into a High Speed Direct Injection combustion chamber are presented. In order to describe the liquid phase, a new model has been developed from ideas brought forward by recent experimental results (Siebers, 1999) and numerical considerations (Abraham, 1999). The liquid penetration length is given by a 1D model which has been validated on a large number of experiments. In the 3D calculation, break-up, vaporization, drag, collision and coalescence are not modeled. The mass, momentum and energy transfers from the liquid to the gas phase are imposed from the nozzle exit surface to the liquid penetration length. This model enables us to reach time step and grid-independent results. The gas penetrations obtained with the model are checked against experimental results in a constant volume chamber (Verhoeven et al., 1998).
Technical Paper

A New Approach to Model the Fan in Vehicle Thermal Management Simulations

2019-02-25
2019-01-5016
Vehicle thermal management (VTM) simulations constitute an important step in the early development phase of a vehicle. They help in predicting the temperature profiles of critical components over a drive cycle and identify components which are exceeding temperature design limits. Parts with the highest temperatures in a vehicle with an internal combustion engine are concentrated in the engine bay area. As packaging constraints grow tighter, the components in the engine bay are packed closer together. This makes the thermal protection in the engine bay even more crucial. The fan influences the airflow into the engine bay and plays an important role in deciding flow distribution in this region. This makes modelling of the fan an important aspect of VTM simulations. The challenge associated with modelling the fan is the accurate simulation of the rotation imparted by the fan to the incoming flow. Currently, two modelling approaches are prevalent in the industry.
Journal Article

A Study on Operation Fluid Consumption for Heavy Duty Diesel Engine Application using both, EGR and SCR

2013-09-24
2013-01-2474
This paper describes a method for optimization of engine settings in view of best total cost of operation fluids. Under specific legal NOX tailpipe emissions requirements the engine out NOX can be matched to the current achievable SCR NOX conversion efficiency. In view of a heavy duty long haul truck application various specific engine operation modes are defined. A heavy duty diesel engine was calibrated for all operation modes in an engine test cell. The characteristics of engine operation are demonstrated in different transient test cycles. Optimum engine operation mode (EOM) selection strategies between individual engine operation modes are discussed in view of legal test cycles and real world driving cycles which have been derived from on-road tests.
Technical Paper

A Time Efficient Thermal and Hydrodynamic Model for Multi Disc Wet Clutches

2022-03-29
2022-01-0647
Wet Clutches are used in automotive powertrains to enable compact designs and efficient gear shifting. During the slip phase of engagement, significant flash temperatures arise at the friction disc to separator interface because of dissipative frictional losses. An important aspect of the design process is to ensure the interface temperature does not exceed the material temperature threshold at which accelerated wear behavior and/or thermal degradation occurs. During the early stages of a design process, it is advantageous to evaluate numerous system and component design iterations exposed to plethora of possible drive cycles. A simulation tool is needed which can determine the critical operational conditions the system must survive for performance and durability to be assured. This paper describes a time-efficient multiphysics model developed to predict clutch disc temperatures with a runtime in the order of minutes.
Technical Paper

A Virtual Residual Gas Sensor to Enable Modeling of the Air Charge

2016-04-05
2016-01-0626
Air charge calibration of turbocharged SI gasoline engines with both variable inlet valve lift and variable inlet and exhaust valve opening angle has to be very accurate and needs a high number of measurements. In particular, the modeling of the transition area from unthrottled, inlet valve controlled resp. throttled mode to turbocharged mode, suffers from small number of measurements (e.g. when applying Design of Experiments (DoE)). This is due to the strong impact of residual gas respectively scavenging dominating locally in this area. In this article, a virtual residual gas sensor in order to enable black-box-modeling of the air charge is presented. The sensor is a multilayer perceptron artificial neural network. Amongst others, the physically calculated air mass is used as training data for the artificial neural network.
Technical Paper

AVL Spectros - a Concept for Lightweight Modular Engine Design

2000-03-06
2000-01-0672
The AVL Spectros engine is a version of a potential engine family concept and an example of lightweight and modular design. The model shown and described in detail is a powerful V8 spark-ignited engine developed for the sporty limousine called I.DE.A One. The design objectives were high power density, compact overall dimensions and enhanced efficiency. These objectives have been achieved by means of downsizing, lightweight design, direct injection with exhaust gas turbo-charging and modular heat management system. One of the design targets was to match the design of the engine compartment with the outer appearance of the I.DE.A One vehicle. This was achieved by the integration of all tubes and cables in modules and the conscious avoidance of covers. The starter-alternator concept allows almost all secondary systems to be powered electrically and thus to omit any auxiliary belt drives.
Technical Paper

About Describing the Knocking Combustion in Gasoline and Gas Engines by CFD Methods

2015-09-01
2015-01-1911
Spark ignited engines are today operated more and more often under high load conditions, where one reason can be identified in the necessity of increasing the efficiency and hence reducing fuel consumption and specific CO2 emissions. Since the gasoline engine operation is inherently limited by knocking at high loads, strategies must be identified, which allow reliable identification and simulation of the appearance of this undesirable type of combustion. A new numerical model for the description of those kinds of pre-flame reactions in a CFD framework is discussed in this paper. Despite emphasis is put here on the auto-ignition effects, it will also be explained that the model is capable of supporting the engine development process in all combustion and emission related aspects.
Technical Paper

Advanced Design and Validation Techniques for Electronic Control Units

1998-02-23
980199
Increasing demand for dynamically controlled safety features, passenger comfort, and operational convenience in upper class automobiles requires an intensive use of electronic control units including software portions. Modeling, simulation, rapid prototyping, and verification of the software need new technologies to guarantee passenger security and to accelerate the time-to-market of new products. This paper presents the state-of-the-art of the design methods for the development of electronic control unit software at BMW. These design methods cover both discrete and continuous system parts, smoothly integrating the respective methods not merely on the code level, but on the documentation, simulation, and design level. In addition, we demonstrate two modeling and prototyping tools for discrete and continuous systems, namely Statemate and MatrixX, and discuss their advantages and drawbacks with respect to necessary prototyping demands.
Technical Paper

Advanced Lighting Simulation (ALS) for the Evaluation of the BMW System Adaptive Light Control (ALC)

2002-07-09
2002-01-1988
The Advanced Lighting Simulation (ALS) is a development tool for systematically investigating and optimizing the Adaptive Light Control (ALC) system to provide the driver with improved headlamps and light distributions. ALS is based on advanced CA-techniques and modern validation facilities. To improve night time traffic safety the BMW lighting system ALC has been developed and optimized with the help of ALS. ALC improves the headlamp illumination by means of continuous adaptation of the headlamps according to the current driving situation and current environment. BMW has already implemented ALC prototypes in real vehicles to demonstrate the advantages on the real road.
Technical Paper

Advanced Methods for Calibration and Validation of Diesel-ECU Models Using Emission and Fuel Consumption Optimization and Prediction During Dynamic Warm Up Tests (EDC)

2013-01-09
2013-26-0113
A calibration and validation workflow will be presented in this paper, which utilizes common static global models for fuel consumption, NOx and soot. Due to the applicability for warm-up tests, e.g. New European Driving Cycle (NEDC), the models need to predict the temperature influence and will be fitted with measuring data from a conditioned engine test bed. The applied model structure consisting of a number of global data-based sub-models is configured especially for the requirements of multi-injection strategies of common rail systems. Additionally common global models for several constant coolant water temperature levels are generated and the workflow tool supports the combination and segmentation of global nominal map with temperature correction maps for seamless and direct ECU setting.
Technical Paper

An Integrated Numerical Tool for Engine Noise and Vibration Simulation

1997-05-20
971992
The development of low noise engines and vehicles, accompanied by the reduction of costs and development time, can be obtained only if the design engineer is supported by complex calculation tools in a concurrent engineering process. In this respect, the reduction of vibrations (passenger comfort) and of vehicle noise (accelerated pass by noise) are important targets to meet legislative limits. AVL has been developing simulation programs for the dynamic-acoustic optimization of engines and gear trains for many years. To simulate the structure-born and air-born noise behavior of engines under operating conditions, substantial efforts on the mathematical simulation model are necessary. The simulation tool EXCITE, described in this paper, allows the calculation of the dynamic-acoustic behavior of power units.
Technical Paper

An integrated 1D/3D workflow for analysis and optimization of injection parameters of a diesel engine

2001-09-23
2001-24-0004
The present contribution gives an overview of the use of different simulation tools for the optimization of injection parameters of a diesel engine. With a one-dimensional tool, the behavior of the mechanics and fluid dynamics of the entire injection system is calculated. This simulation provides information on the dynamic needle lift, injection rates, pressures, etc. The flow within the injector is simulated using a three-dimensional CFD tool. By use of a two-phase model, it is possible to analyze the cavitating flow inside the injector and to calculate the effective nozzle hole area as well as the exit flow characteristics. Mixture formation, combustion and pollutant formation simulation is performed adopting three-dimensional CFD. In order to provide the initial and boundary conditions for the engine CFD simulation and to optimize the engine cycle performance a one-dimensional tool is adopted.
Technical Paper

Analysis of Transient Drive Cycles using CRUISE-BOOST Co-Simulation Techniques

2002-03-04
2002-01-0627
In order to improve the accuracy of vehicle simulation under transient cycle conditions and thus predict performance and fuel consumption, consideration of the complete system engine/drivetrain/vehicle is necessary. The coupling of otherwise independent simulation programs is therefore necessary for the vehicle and engine. The description of thermally transient processes enables the calculation of the heat balance of the engine, which in turn enables the simulation of warming up operation. Through consideration of the engine warming up process, the quality of the prediction of fuel consumption and emissions is improved. The combination of the simulation programs CRUISE and BOOST to determine the engine heat balance has proven to be successful for the analysis of transient drive cycles.
Technical Paper

Analytical Wall-Function Strategy for the Modelling of Turbulent Heat Transfer in the Automotive CFD Applications

2019-04-02
2019-01-0206
In contrast to the well-established “standard” log-law wall function, the analytical wall function (AWF) as an advanced modelling approach has not been extensively used in the industrial computational fluid dynamics (CFD) applications. As the model was originally developed aiming at computations on relatively coarse meshes, potential stability issues may arise due to the pressure-gradient sensitivity if employing locally inappropriate mesh layers, typically associated with the complex geometry details. This work evaluates performance of the thermal AWF, as proposed by Suga [4], in conjunction with the main flow field computed employing the k-ζ-f turbulence model and the hybrid wall treatment (denoted as AWF-e) within the Reynolds-averaged Navier-Stokes (RANS) framework.
Technical Paper

Analytical system for combustion engine exhaust emissions

2000-06-12
2000-05-0346
As emission regulations become tighter and tighter, equipment must evolve to be able to achieve the new standards. Also additional test requirements demand a system that is flexible and can accommodate differences both in the tests and the test facility. By that test cell equipment for chassis dynamometer as well as engine dynamometer applications is getting increasingly complex. That also will require new concepts for the design of such systems. In the past emission system design was more likely a collection and packaging process, which has interfaced various independent components. Now, the development of modern analytical emission systems requires a true holistic design process. This paper will describe the demands and the realization of a modern emission system. It can be shown that an extended effort during the design process will result in a high performance system, which still remains simple and robust.
Technical Paper

Application of a New Method for On-Line Oil Consumption Measurement

1999-10-25
1999-01-3460
Fast and exact measurement of engine oil consumption is a very difficult task. Our aim is to achieve this measurement at a common test bed without engine modifications. We resolved this problem with a new technique using Laser Mass Spectrometry to detect appropriate tracers in the raw engine exhaust. The tracers are added to the engine oil. to the engine oil. For detection of these tracers we use a Laser Mass Spectrometer (LAMS). This is a combination of resonant laser ionization (with an all-solid-state laser) and Time-of-Flight Mass Spectrometry. Currently this is the only way to detect oil originated molecules (like our tracers) in the raw exhaust very fast (50 Hz) and sensitive (ppb-region). Thus, engine mapping of oil consumption over load and speed can be performed in 1-2 days with about 90 measurements. Even measurement during dynamic engine operation is possible, but not quantitative (due to the lack of information about dynamic exhaust gas mass flow).
Journal Article

Assessing Low Frequency Flow Noise Based on an Experimentally Validated Modal Substructuring Strategy Featuring Non-Conforming Grids

2022-06-15
2022-01-0939
The continuous encouragement of lightweight design in modern vehicles demands a reliable and efficient method to predict and ameliorate the interior acoustic comfort for passengers. Due to considerable psychological effects on stress and concentration, the low frequency contribution plays a vital rule regarding interior noise perception. Apart other contributors, low frequency noise can be induced by transient aerodynamic excitation and the related structural vibrations. Assessing this disturbance requires the reliable simulation of the complex multi-physical mechanisms involved, such as transient aerodynamics, structural dynamics and acoustics. The domain of structural dynamics is particularly sensitive regarding the modelling of attachments restraining the vibrational behaviour of incorporated membrane-like structures. In a later development stage, when prototypes are available, it is therefore desirable to replace or update purely numerical models with experimental data.
Technical Paper

Automated Model-Based Calibration for Drivability Using a Virtual Engine Test Cell

2015-04-14
2015-01-1628
Increasing powertrain complexity and the growing number of vehicle variants are putting a strain on current calibration development processes. This is particularly challenging for vehicle drivability calibration, which is traditionally completed late in the development cycle, only after mature vehicle hardware is available. Model-based calibration enables a shift in development tasks from the real world to the virtual world, allowing for increased system robustness while reducing development costs and time. A unique approach for drivability calibration was developed by incorporating drivability analysis software with online optimization software into a virtual engine test cell environment. Real-time, physics-based engine and vehicle simulation models were coupled with real engine controller hardware and software to execute automated drivability calibration within this environment.
X