Refine Your Search

Topic

Author

Affiliation

Search Results

Technical Paper

1970 Passenger Car High Altitude Emission Baseline

1979-02-01
790959
The 1977 Clean Air Act Amendments allow the U.S. Environmental Protection Agency to set high altitude emission standards for 1981-83, but specify that any such standards may not be more stringent than comparable sea level standards -- relative to 1970 emission levels. Since available high altitude emission data from 1970 models were incomplete and controversial, the Motor Vehicle Manufacturers Association contracted with Automotive Testing Laboratories, Inc. to test a fleet of 25 1970 cars. Results of the test program showed average increases in emissions at Denver's altitude, compared to sea level, to be about 30% for evaporative HC, 57 to 60% for exhaust HC, 215 to 247% for CO and -46 to -47% for NOx. Corresponding HC and CO exhaust emission baselines would be 6.4 to 6.6 and 108 to 118 g/mi respectively.
Technical Paper

1983 Ford Ranger Truck HSLA Steel Wheel

1982-02-01
820019
The demand for improved fuel economy in both cars and trucks has emphasized the need for lighter weight components. The application of high strength steel to wheels, both rim and disc, represents a significant opportunity for the automotive industry. This paper discusses the Ranger HSLA wheel program that achieved a 9.7 lbs. per vehicle weight savings relative to a plain carbon steel wheel of the same design. It describes the Ranger wheel specifications, the material selection, the metallurgical considerations of applying HSLA to wheels, and HSLA arc and flash butt welding. The Ranger wheel design and the development of the manufacturing process is discussed, including design modifications to accommodate the lighter gage. The results demonstrate that wheels can be successfully manufactured from low sulfur 60XK HSLA steel in a conventional high volume process (stamped disc and rolled rim) to meet all wheel performance requirements and achieve a significant weight reduction.
Technical Paper

1987 Thunderbird Turbo Coupe Programmed Ride Control (PRC) Suspension

1987-02-01
870540
This paper describes Programmed Ride Control (PRC), the automatic adjustable shock absorber system designed and patented by Ford Motor Company. The system utilizes low shock absorber damping under normal driving conditions to provide soft boulevard ride, automatically switching to firm damping when required for improved handling. The system's microprocessor control module “learns” where the straight ahead steering wheel position is, allowing the system to respond to absolute steering wheel angle. A closed loop control strategy is used to improve system reliability and to notify the driver in the event of a system malfunction. Fast acting rotary solenoids control the damping rate of the shock absorbers.
Technical Paper

2005 Ford GT - Melding the Past and the Future

2004-03-08
2004-01-1251
The 2005 Ford GT high performance sports car was designed and built in keeping with the heritage of the 1960's LeMans winning GT40 while maintaining the image of the 2002 GT40 concept vehicle. This paper reviews the technical challenges in designing and building a super car in 12 months while meeting customer expectations in performance, styling, quality and regulatory requirements. A team of dedicated and performance inspired engineers and technical specialists from Ford Motor Company Special Vehicle Teams, Research and Advanced Engineering, Mayflower Vehicle Systems, Roush Industries, Lear, and Saleen Special Vehicles was assembled and tasked with designing the production 2005 vehicle in record time.
Technical Paper

21SIAT-0638 - Fleet Analytics - A Data-Driven and Synergetic Fleet Validation Approach

2021-09-22
2021-26-0499
Current developments in automotive industry such as hybrid powertrains and the continuously increasing demands on emission control systems, are pushing complexity still further. Validation of such systems lead to a huge amount of test cases and hence extreme testing efforts on the road. At the same time the pressure to reduce costs and minimize development time is creating challenging boundaries on development teams. Therefore, it is of utmost importance to utilize testing and validation prototypes in the most efficient way. It is necessary to apply high levels of instrumentation and collect as much data as possible. And a streamlined data pipeline allows the fleet managers to get new insights from the raw data and control the validation vehicles as well as the development team in the most efficient way. In this paper we will demonstrate a data-driven approach for validation testing.
Technical Paper

3-D Numerical Study of Fluid Flow and Pressure Loss Characteristics through a DPF with Asymmetrical Channel size

2011-04-12
2011-01-0818
The main objective of the current paper was to investigate the fluid flow and pressure loss characteristics of DPF substrates with asymmetric channels utilizing 3-D Computational Fluid Dynamics (CFD) methods. The ratio of inlet to outlet channel width is 1.2. First, CFD results of velocity and static pressure distributions inside the inlet and outlet channels are discussed for the baseline case with both forward and reversed exhaust flow. Results were also compared with the regular DPF of same cell structure and wall material properties. It was found that asymmetrical channel design has higher pressure loss. The lowest pressure loss was found for the asymmetrical channel design with smaller inlet channels. Then, the effects of DPF length and filter wall permeability on pressure loss, flow and pressure distributions were investigated.
Technical Paper

A Biomechanical Analysis of Head, Neck, and Torso Injuries to Child Surrogates Due to Sudden Torso Acceleration

1984-10-01
841656
This paper reports on the injuries to the head, neck and thorax of fifteen child surrogates, subjected to varying levels of sudden acceleration. Measured response data in the child surrogate tests and in matched tests with a three-year-old child test dummy are compared to the observed child surrogates injury levels to develop preliminary tolerance data for the child surrogate. The data are compared with already published data in the literature.
Technical Paper

A Brief History of Auto Radio Styling

1989-02-01
890114
“There's nothing new under the sun,” the old proverb says. But you only have to read a magazine, scan a periodical, listen to the radio, watch television, or glance at the multitude of ads that promise that such and such product is the latest trend or has up-to-date, state-of-the-art technology, to seemingly prove the old proverb wrong. However, old proverbs become old because they withstand the test of time. In this case, a hasty judgement should be withheld. Currently, as in the past, the above holds true for car radios as well. Whether in the United States, Europe, Canada or Latin America, the public has always been susceptible to last minute technological advances. It is curious then, that as far as car radio styling is concerned, their appearance has been typically rather conservative, and that it is only recently that styling has begun to change to be more in tune with the times.
Technical Paper

A CAE Methodology for Reducing Rattle in Structural Components

1997-05-20
972057
Squeak and rattle has become a primary source of undesired noise in automobiles due to the continual diminishment of engine, power train and tire noise levels. This article presents a finite-element-based methodology for the improvement of rattle performance of vehicle components. For implementation purposes, it has been applied to study the rattle of a glove compartment latch and corner rubber bumpers. Results from the glove compartment study are summarized herein. Extensions to other rattle problems are also highlighted.
Technical Paper

A Calibration Study of CFD for Automotive Shapes and CD

1994-03-01
940323
An extensive calibration study has been initiated to assess the predictive ability of CFD (Computational Fluid Dynamics) for the aerodynamic design of automotive shapes. Several codes are being checked against a set of detailed wind tunnel measurements on ten car-like shapes. The objective is to assess the ability of numerical analysis to predict the CD (drag coefficient) influence of the rear end configuration. The study also provides a significant base of information for investigating discrepancies between predicted and measured flow fields and for assessing new numerical techniques. This technical report compares STAR-CD predictions to the wind tunnel measurements. The initial results are quite encouraging. Calculated centerline pressure distributions on the front end, underbody and floor compare well for all ten shapes. Wake flow structures are in reasonable agreement for many of the configurations. Drag, lift, and pitching moment trends follow the experimental measurements.
Technical Paper

A Comparative Study of the Effects of Fuel Properties of Non-Petroleum Fuels on Diesel Engine Combustion and Emissions

1984-10-01
841334
A single cylinder indirect injection diesel engine was used to evaluate the emissions, fuel consumption, and ignition delay of non-petroleum liquid fuels derived from coal, shale, and tar sands. Correlations were made relating fuel properties with exhaust emissions, fuel consumption, and ignition delay. The results of the correlation study showed that the indicated fuel consumption, ignition delay, and CO emissions significantly correlated with the H/C ratio, specific gravity, heat of combustion, aromatics and saturates content, and cetane number, Multiple fuel properties were necessary to correlate the hydrocarbon emissions. The NOx emissions did not correlate well with any fuel property. Because these fuels from various resources were able to correlate succesfully with many of the fuel properties suggests that the degree of refinement or the chemical composition of the fuel is a better predictor of its performance than its resource.
Technical Paper

A Comparative Study on the Performance of Activated Carbon Canisters Using Different Purge Air Humidities

1994-03-01
940299
Although concerns have been raised that the performance of activated carbon canisters will decrease when exposed to air at higher humidities, results of a recently conducted test program do not substantiate these concerns. The results show that the purge efficiency and the working capacity of canisters that are purged with air at 75 grains per pound of dry air (GPPDA) humidity are equal or greater than those obtained with 50 GPPDA humidity purging. The results have been submitted to the California Air Resources Board (ARB) for use in aligning their evaporative emission testing regulations with the regulations promulgated by the U. S. Environmental Protection Agency (EPA).
Technical Paper

A Comparison of Total and Speciated Hydrocarbon Emissions from an Engine Run on Two Different California Phase 2 Reformulated Gasolines

1994-10-01
941972
New regulations from the state of California have established, for the first time, reactivity-based exhaust emissions standards for new vehicles and require that any clean alternative fuels needed by these vehicles be made available. Contained in these regulations are provisions for “reactivity adjustment factors” which will provide credit for vehicles which run on reformulated gasoline. The question arises: given two fuels of different chemical composition, but both meeting the criteria for CA Phase 2 gasoline (reformulated gasoline), how different might the specific reactivity of the exhaust hydrocarbons be? In this study we explored this question by examining the engine-out HC emissions from a single-cylinder version of the 5.4 L modular truck engine run on two different CA Phase 2 fuels.
Technical Paper

A Comparison of the Emissions from a Vehicle in Both Normal and Selected Malfunctioning Operation Modes

1996-10-01
961903
A 1990 Ford Taurus operated on reformulated gasoline was tested under three modes of malfunction: disabled heated exhaust gas oxygen (HEGO) sensor, inactive catalytic converter, and controlled misfire. The vehicle was run for four U.S. EPA UDDS driving schedule (FTP-75) tests at each of the malfunction conditions, as well as under normal operating conditions. An extensive set of emissions data were collected. In addition to the regulated emissions (HC, CO, and NOx), a detailed chemical analysis was carried out to determine the gas- and particle-phase non-regulated emissions. The effect of vehicle malfunction on gas phase emissions was significantly greater than it was on particle phase emissions. For example, CO emissions ranged from 2.57 g/mi (normal operation) to 34.77 g/mi (disable HEGO). Total HCs varied from 0.22 g/mi (normal operation) to 2.21 g/mi (blank catalyst). Emissions of air toxics (1,3-butadiene, benzene, acetaldehyde, and formaldehyde) were also significantly effected.
Technical Paper

A Crash Simulation of Instrument Panel Knee Bolster Using Hybrid III Dummy Lower Torso

1995-02-01
951067
This paper reports the analytical procedure developed for a simulation of knee impact during a barrier crash using a hybrid III dummy lower torso. A finite element model of the instrument panel was generated. The dummy was seated in mid-seat position and was imparted an initial velocity so that the knee velocity at impact corresponded to the secondary impact velocity during a barrier crash. The procedure provided a reasonably accurate simulation of the dummy kinematics. This simulation can be used for understanding the knee bolster energy management system. The methodology developed has been used to simulate impact on knee for an occupant belted or unbelted in a frontal crash. The influence of the vehicle interior on both the dummy kinematics and the impact locations was incorporated into the model. No assumptions have been made for the knee impact locations, eliminating the need to assume knee velocity vectors.
Technical Paper

A Discussion of Aerodynamic Interference Effects Between a Race Car and a Race Track Retaining Wall (A Wind Tunnel NASCAR Case Study)

1988-02-01
880458
This report should not be looked upon as an end in itself, but rather as a thought provoker. It raises the question that there may be an additional dimension to race car aerodynamics other than just open roadway drag reduction, stability and handling performance. Some situations are seldom considered, nor even addressed, in public forums. Based upon wind tunnel test data, the authors show, at least for this one test setup, that significantly large changes in aerodynamic forces can be generated on a NASCAR stock car racer by its close proximity to the stationary retaining wall around a race track.
Technical Paper

A Dynamometer Study of Off-Cycle Exhaust Emissions - The Auto/Oil Air Quality Improvement Research Program

1997-05-01
971655
Four vehicle fleets, consisting of 3 to 4 vehicles each, were emission tested on a 48″ roll chassis dynamometer using both the FTP urban dynamometer driving cycle and the REP05 driving cycle. The REP05 cycle was developed to test vehicles under high speed and high load conditions not included in the FTP. The vehicle fleets consisted of 1989 light-duty gasoline vehicles, 1992-93 limited production FFV/VFV methanol vehicles, 1992-93 compressed natural gas (CNG) vehicles and their gasoline counterparts, and a 1992 production and two prototype ethanol FFV/VFV vehicles. All vehicles (except the dedicated CNG vehicles) were tested using Auto/Oil AQIRP fuels A and C2. Other fuels used were M85 blended from A and C2, E85 blended from C1, which is similar to C2 but without MTBE, and four CNG fuels representing the range of in-use CNG fuels. In addition to bag measurements, tailpipe exhaust concentration and A/F data were collected once per second throughout every test.
Technical Paper

A Feedback A/F Control System for Low Emission Vehicles

1993-03-01
930388
Recent Federal and California legislation have mandated major improvements in emission control. Tailpipe HC emission must be decreased an order of magnitude for the California Ultra Low Emission Vehicle (ULEV) standard. Present feedback A/F* control systems employ a Heated Exhaust Gas Oxygen sensor (HEGO sensor) upstream of the catalyst to perform A/F feedback control. Limitations on the ultimate accuracy of these switching sensors are well known. To overcome these limitations a linear Universal Exhaust Gas Oxygen sensor (UEGO sensor) placed downstream from the minicatalyst is employed to attain improved A/F control and therefore, higher three-way catalyst (TWC) conversion efficiency. This configuration was granted a patent in 1992 (1**). This study compares performance differences between the two feedback control systems on a Ford Mustang. In initial studies both the UEGO and HEGO sensors were compared at the midposition location downstream of a minicatalyst.
Technical Paper

A Gasoline Engine Cycle that Permits High Expansion Operation with Reduced Part Load Throttling Losses by Modulating Charge Mass and Temperature

1986-02-01
860327
A four-stroke, spark-ignition engine is described that seeks to achieve high expansion ratio and low throttling losses at light load, whilst retaining good knock resistance at full load operation and without the need for expensive mechanical changes to the engine. The engine does, however, incorporate a second inlet (transfer) valve and associated transfer port linked to the intake port. The timing of the transfer valve is different from that of the main inlet valve. Load modulation is achieved by control of the gas outflow from the transfer port. A computer model of the engine is first validated against measured data from a conventional engine. Comparisons are made of incylinder pressure at part load conditions, total air flowrate through the engine and intake port air velocities as a function of crank angle position.
Technical Paper

A General Formulation for Topology Optimization

1994-11-01
942256
Topology optimization is used for obtaining the best layout of vehicle structural components to achieve predetermined performance goals. Unlike the most common approach which uses the optimality criteria methods, the topology design problem is formulated as a general optimization problem and is solved by the mathematical programming method. One of the major advantages of this approach is its generality; thus it can solve various problems, e.g. multi-objective and multi-constraint problems. The MSC/NASTRAN finite element code is employed for response analyses. Two automotive examples including a simplified truck frame and a truck frame crossmember are presented.
X