Refine Your Search

Topic

Author

Search Results

Journal Article

A Vision Based Audit Method and Tool that Compares a Systems Installation on a Production Aircraft to the Original Digital Mock-Up

2011-10-18
2011-01-2565
The work describes a concept application to aid a safety engineer to perform an audit of a production aircraft against safety driven installation requirements. The capability is achieved using the following steps: A) Image capture of a product and measurement of distances between datum points within the product with/without references to a planar surface B) A digital reconstruction of the fabricated product by using multiple captured images to reposition parts according to the actual model. C) The projection onto the 3D digital reconstruction of the safety related installation constraints, respecting the original intent of the constraints that are defined in the digital mock-up.
Technical Paper

Applying a Concept for Robot-Human Cooperation to Aerospace Equipping Processes

2011-10-18
2011-01-2655
Significant effort has been applied to the introduction of automation for the structural assembly of aircraft. However, the equipping of the aircraft with internal services such as hydraulics, fuel, bleed-air and electrics and the attachment of movables such as ailerons and flaps remains almost exclusively manual and little research has been directed towards it. The problem is that the process requires lengthy assembly methods and there are many complex tasks which require high levels of dexterity and judgement from human operators. The parts used are prone to tolerance stack-ups, the tolerance for mating parts is extremely tight (sub-millimetre) and access is very poor. All of these make the application of conventional automation almost impossible. A possible solution is flexible metrology assisted collaborative assembly. This aims to optimise the assembly processes by using a robot to position the parts whilst an operator performs the fixing process.
Journal Article

Blind Bolts Developments

2011-10-18
2011-01-2755
There is an ever growing demand for blind fastener in the aerospace industry. This demand is driven not only by the advantages of single sided installation, but also by the potential to fully automate their installation process. Blind fasteners can easily be integrated with innovative end-effectors that combine drilling, installation and inspection systems, enabling the reduction of process cycle times and their associated cost savings. Clearly the advantages of single sided installation are a key benefit, but it cannot be forgotten that currently the mechanical performance of these systems is reduced compared with conventional threaded or swaged parallel shank fasteners. There are other important drawbacks existing around them which could penalise significantly the optimised design and performance of the structures. Specific key characteristics that take into account some of these drawbacks have been established by Airbus which will be referenced in this paper.
Technical Paper

Combination of Experimental and Computational Approaches to A320 Wing Assembly

2017-09-19
2017-01-2085
The paper is devoted to the simulation of A320 wing assembly on the base of numerical experiments carried out with the help of ASRP software. The main goal is to find fasteners’ configuration with minimal number of fastening elements that provides closing of admissible initial gaps. However, for considered junction type initial gap field is not known a priori though it should be provided as input data for computations. In order to resolve this problem the methodology of random initial gap generation based on available results of gap measurements is developed along with algorithms for optimization of fasteners' configuration on generated initial gaps. Presented paper illustrates how this methodology allows optimizing assembly process for A320 wing.
Technical Paper

Development of a High Temperature Power Module Technology with SiC Devices for High Density Power Electronics

2011-10-18
2011-01-2620
This paper presents the development of a high density packaging technology for wide band gap power devices, such as silicon carbide (SiC). These devices are interesting candidates for the next aircraft power electronic converters. Effectively they achieve high switching frequencies thanks to the low losses level. High switching frequencies lead to reduce the passive components size and to an overall weight reduction of power converters. Moreover, SiC devices may enable operation at junction temperatures around 250°C. The cooling requirement is much less stringent than for usual Si devices. This might considerably simplify the cooling system, and reduce the overall weight. To achieve the integration requirements for SiC devices, classical wire bonding interconnection is replaced by a stacked packaging using bump interconnection technologies, called sandwich. These technologies offer two thermal paths to drain heat out and present more power integration possibilities.
Journal Article

Development of a Robotic System for Automated Drilling and Inspection of Small Aerostructures

2023-03-07
2023-01-1012
Traditional solutions developed for the aerospace industry must overcome challenges posed for automation systems like design, requalification, large manual content, restricted access, and tight tolerances. At the same time, automated systems should avoid the use of dedicated equipment so they can be shared between jigs; moved between floor levels and access either side of the workpiece. This article describes the development of a robotic system for drilling and inspection for small aerostructure manufacturing specifically designed to tackle these requirements. The system comprises three work packages: connection within the digital thread (from concept through to operational metrics including Statistical Process Control), innovative lightweight / low energy drill, and auto tool-change with in-process metrology. The validation tests demonstrating Technology Readiness Level 6 are presented and results are shown and discussed.
Technical Paper

EMR with High Reliability for Retrofit of E4100 Riveting Gantry Machines

2017-09-19
2017-01-2099
Electroimpact has retrofitted two E4100 riveting gantry machines and two more are in process. These machines use the EMR (Electromagnetic Riveter) riveting process for the installation of slug rivets. We have improved the skin side EMR to provide fast and reliable results: reliability improved by eliminating a weekly shutdown of the machine. In paper 2015-01-2515 we showed the slug rivet injector using a Synchronized Parallel Gripper that provides good results over multiple rivet diameters. This injector is mounted to the skin side EMR so that the rivet injection can be done at any position of the shuttle table. The EMR is a challenging application for the fingers due to shock and vibration. In previous designs, fingers would occasionally be thrown out of the slots. To provide reliable results we redesigned the fingers retainer to capture the finger in a slotted plastic block which slides along the outside diameter of the driver bearing.
Technical Paper

Eco-efficient Materials for Aircraft Application

2011-10-18
2011-01-2742
Due to the importance of fulfilling the actual and upcoming environmental legislation, it is an Airbus main target to develop eco-efficient materials. Under consideration of the economical effects, these processes will be implemented into the production line. This paper gives an overview of Airbus and its partners research work, the results obtained within the frame of the European funded, integrated technology demonstrator (ITD) ECO Design for Airframe. This ITD is part of the joint technology initiative Clean Sky. Developments with different grade of maturity from “upstream” as the investigation of materials from renewable recourses up to materials now in use in production as low volatile organic compounds cleaner are under investigation. As a basis for future eco-efficient developments an approach for a quantitative life cycle assessment will be demonstrated.
Technical Paper

Extended Non-Destructive Testing of Composite Bonds

2011-10-18
2011-01-2514
Composite materials are increasingly being used in the manufacturing of structural components in aeronautics industry. A consequent light-weight design of CFRP primary structures requires adhesive bonding as the optimum joining technique but is limited due to a lack of adequate quality assurance procedures. The successful implementation of a reliable quality assurance concept for adhesive bonding within manufacturing and in-service environments will provide the basis for increased use of lightweight composite materials for highly integrated aircraft structures thus minimizing rivet-based assembly. The expected weight saving for the fuselage airframe is remarkable and therefore the driver for research and development of key-enabling technologies. The performance of adhesive bonds mainly depends on the physico-chemical properties of adherend surfaces.
Technical Paper

Fixturing and Tooling for Wing Assembly with Reconfigurable Datum System Pickup

2011-10-18
2011-01-2556
The aerospace manufacturing sector is continuously seeking automation due to increased demand for the next generation single-isle aircraft. In order to reduce weight and fuel consumption aircraft manufacturers have increasingly started to use more composites as part of the structure. The manufacture and assembly of composites poses different constraints and challenges compared to the more traditional aircraft build consisting of metal components. In order to overcome these problems and to achieve the desired production rate existing manufacturing technologies have to be improved. New technologies and build concepts have to be developed in order to achieve the rate and ramp up of production and cost saving. This paper investigates how to achieve the rib hole key characteristic (KC) in a composite wing box assembly process. When the rib hole KC is out of tolerances, possibly, the KC can be achieved by imposing it by means of adjustable tooling and fixturing elements.
Journal Article

Flexible Tooling for Wing Box Rib Clamping and Drilling

2011-10-18
2011-01-2639
Currently the wing box rib assembly process requires the manual location and temporary fixing of components within product specific jig or fixtures for drilling. After drilling and reaming, parts are separated, cleaned, deburred prior to adding sealant, reclaiming and final bolting, but this may significantly increase cost, manufacturing lead-time, reduces flexibility and cannot usually be economically modified for use on other aircraft types. Due to potential increase in demand for the next generation single isle aircraft, existing tooling solutions have to be improved and new technologies have to be developed. This paper describes the development and testing of flexible tooling to provide clamping and support for drilling wing box ribs to mating rib posts within a restricted environment. Results are presented along with a discussion of the problems that may be encountered during clamping trials.
Technical Paper

Force Controlled Assembly of a Compliant Rib

2011-10-18
2011-01-2734
Automation in aerospace industry is often in the form of dedicated solutions and focused on processes like drilling, riveting etc. The common industrial robot has due to limitations in positional accuracy and stiffness often been unsuitable for aerospace manufacturing. One major cost driver in aircraft manufacturing is manual assembly and the bespoke tooling needed. Assembly tasks frequently involve setting relations between parts rather than a global need for accuracy. This makes assembly a suitable process for the use of force control. With force control a robot equipped with needed software and hardware, searches for desired force rather than for a position. To test the usefulness of force control for aircraft assembly an experimental case aligning a compliant rib to multiple surfaces was designed and executed. The system used consisted of a standard ABB robot and an open controller and the assembly sequence was made up of several steps in order to achieve final position.
Technical Paper

IT Security Management of Aircraft in Operation: A Manufacturer's View

2011-10-18
2011-01-2717
Over the last few years, IT systems have quickly found their way onboard aircrafts, driven by the continuous pursuit of improved safety and efficiency in aircraft operation, but also in an attempt to provide the ultimate in-flight experience for passengers. Along with IT systems and communication links came IT security as a new factor in the equation when evaluating and monitoring the operational risk that needs to be managed during the operation of the aircraft. This is mainly due to the fact that security deficiencies can cause services to be unavailable, or even worse, to be exploited by intentional attacks or inadvertent actions. Aircraft manufacturers needed to develop new processes and had to get organized accordingly in order to efficiently and effectively address these new risks.
Technical Paper

Interface Management in Wing-Box Assembly

2011-10-18
2011-01-2640
Gaps between structural components have been a common problem since the start of aviation. This has usually been caused by the manufacturing tolerances of the components in question not being sufficiently tight. An example where such issues arise is in the assembly of a wing skin to rib feet to form an aircraft wing-box, where it is commonly found that, whilst some rib feet are in contact with the wing skin, others are spaced from it. Yet a strong connection between the wing skin and the rib feet is important to maintain the structural strength of the wing-box. To eliminate the existing gaps, the current approach, used in many manufacturing production lines, involves filling in the gaps to the required shape by applying liquid or solid shim to the rib feet. This is a relatively long and expensive process. To overcome these current inherent difficulties in interface management, a method to eliminate the shimming requirement between component interfaces is presented.
Journal Article

Methodology for Solving Contact Problem during Riveting Process

2011-10-18
2011-01-2582
The paper describes the methodology of contact problem solving that is used in specialized software code aimed at simulation of aircraft assembly process. For considered class of problems it is possible to radically reduce the number of unknowns without loss of accuracy. The results of validation of developed code against physical experiments and commercial FEM codes are also given.
Technical Paper

Optimization of Automated Airframe Assembly Process on Example of A350 S19 Splice Joint

2019-09-16
2019-01-1882
The paper presents the numerical approach to simulation and optimization of A350 S19 splice assembly process. The main goal is to reduce the number of installed temporary fasteners while preventing the gap between parts from opening during drilling stage. The numerical approach includes computation of residual gaps between parts, optimization of fastener pattern and validation of obtained solution on input data generated on the base of available measurements. The problem is solved with ASRP (Assembly Simulation of Riveting Process) software. The described methodology is applied to the optimization of the robotized assembly process for A350 S19 section.
Technical Paper

Orbital Drilling

2011-10-18
2011-01-2533
During mechanical assembly, individual parts are joined by different types of fasteners which are commonly to be installed into tightly tolerated holes. Drilling of widely used modern materials like CFRP and titanium leads to challenges in terms of tool and process development. A significant challenge is one step drilling in assemblies made from mixed material stacks. It results in deviating hole diameters making the additional reaming operation essential.”But also drilling of thick single material stacks imposes difficulties in terms of hole tolerance, chip extraction, heat accumulation and lubrication issues, leading to the necessity of drilling in several steps to achieve the required hole quality and integrity. During orbital drilling the drive spindle rotates eccentrically in addition to tool rotation and feed movement, leading to a circular path of the cutting tool. Orbital drilling can offer advantages compared with conventional drilling and reaming.
Technical Paper

Orbital Drilling Machine for One Way Assembly in Hard Materials

2011-10-18
2011-01-2745
In Aeronautic industry, when we launch a new industrialization for an aircraft sub assembly we always have the same questions in mind for drilling operations, especially when focusing on lean manufacturing. How can we avoid dismantling and deburring parts after drilling operation? Can a drilling centre perform all the tasks needed to deliver a hole ready to install final fastener? How can we simplify specific jigs used to maintain parts during drilling operations? How can we decrease down-time of the drilling centre? Can a drilling centre be integrated in a pulse assembly line? How can we improve environmental efficiency of a drilling centre? It is based on these main drivers that AIRBUS has developed, with SPIE and SOS, a new generation of drilling centre dedicated for hard materials such as titanium, and high thicknesses. The first application was for the assembly of the primary structure of A350 engine pylons.
Technical Paper

Reducing Energy Use in Aircraft Component Manufacture - Applying Best Practice in Sustainable Manufacturing

2011-10-18
2011-01-2739
Rising energy costs and increased regulation in recent years have caused industrialists to investigate how to apply ‘energy efficiency’ to their manufacturing operations. As well as reducing operating costs, the benefits of a ‘green’ image as a market differentiator are beginning to be realised. The literature describes the successful implementation of a variety of approaches to energy reduction, with particular focus on energy intensive industries (such as foundries) and on improvements to building services (such as lighting). However, a systematic approach to applying sustainable practices to the manufacturing processes involved in the production of high value products, such as aircraft, is noticeably absent. This paper describes how a number of sustainable manufacturing approaches have been combined, enhanced and applied to the shop floor of a manufacturing facility in the UK responsible for the production of large component assemblies for the aerospace industry.
Technical Paper

Rivetless Nutplate Developments for Aerospace Applications

2011-10-18
2011-01-2756
Within this paper, the AIRBUS approach on the development of rivetless nutplates as an alternative to riveted anchor nuts is described. Within the frame of a wider analysis, it was identified that currently used riveted anchor nut elements does have disadvantages with negative impact on an optimized cost-efficient and lead-time driven design and manufacturing environment. Rivetless nutplate systems provide some features that are potentially capable to mitigate some of the identified disadvantages of riveted elements. The paper covers the key requirements and objectives that were put in place in order to identify the most beneficial solution(s). It furthermore contains detailed information on the rivetless nutplate systems selected by AIRBUS and the justification for the selection that was made.
X