Refine Your Search

Topic

Author

Search Results

Technical Paper

A Simplified Model of Air Suspension for Multi Body Simulation of the Commercial Passenger Vehicle

2013-01-09
2013-26-0157
Multi Body Dynamics (MBD) simulation software is used in product development cycle to reduce the lead time to market. These software have standard parametric templates for modeling metallic suspension systems, which can be quickly modified and used in full vehicle models for ride, handling analysis and the durability load predictions. Generally every Original Equipment Manufacturer (OEM) has unique air suspension arrangement and hence standard template is not available for air suspension modeling in commercial MBD software. Air suspension with self-leveling control mechanism is preferred over metallic suspension in the commercial passenger vehicle like bus for smooth ride comfort. Hence custom made templates for these systems need to be developed for use with MBD software. In this paper, a simplified model of air suspension is presented.
Technical Paper

Accelerated Combined Stress Testing of Automotive Head Lamp Relays

2017-03-28
2017-01-0275
As technology gets upgraded every day, automotive manufacturers are paying more attention towards delivering a highly reliable product which performs its intended function throughout its useful life (without any failure). To develop a reliable product, accelerated combined stress testing should be conducted in addition to the conventional design validation protocol for the product. It brings out most of the potential failure modes of the product, so that necessary actions can be taken for the reliability improvement. This paper discusses about the field failure simulation and reliability estimation of automotive headlamp relays using accelerated combined stress testing. To analyze various field failure modes, performance and tear down analysis were carried out on the field failure samples. Field data (i.e. electrical, thermal and vibration signals) were acquired to evaluate normal use conditions.
Journal Article

Accelerated Lab Test Methodology for Steering Gearbox Bracket Using Fatigue Damage and Reliability Correlation

2017-04-11
2017-01-9177
In the modern automotive sector, durability and reliability are the most common terms. Customers are expecting a highly reliable product but at low cost. Any product that fails within its useful life leads to customer dissatisfaction and affects the reputation of the OEM. To eradicate this, all automotive components undergo stringent validation protocol, either in proving ground or in lab. This paper details on developing an accelerated lab test methodology for steering gearbox bracket using fatigue damage and reliability correlation by simulating field failure. Initially, potential failure causes for steering gearbox bracket were analyzed. Road load data was then acquired at proving ground and customer site to evaluate the cumulative fatigue damage on the steering gearbox bracket. To simulate the field failure, lab test facility was developed, reproducing similar boundary conditions as in vehicle.
Technical Paper

An Innovative Approach Towards Low-Emission (BS-IV) & Improved-Performance of Diesel Engine with Conventional Fuel Injection Equipment (Non-Electronic Injectors & E-Governed In-Line Pump)

2021-09-22
2021-26-0060
The conventional internal combustion engines continue to dominate many fields like transportation, agriculture and power generation. Moreover, apprehension over oil price restriction has created an unprecedented demand for fuel economy. Diesel engine is mostly preferred for its higher thermal efficiency, high-torque and outstanding longevity. In recent days with flooded technologies, Uniqueness and the Differentiation of Product play vital role for a successful business in Auto Industry. The present invention is related to the Challenges of Design & Development of Conventional Diesel Engine to meet the stringent emission & performance requirements (BS-IV) of Internal Combustion engines, and more particularly to achieve the targets with conventional Fuel Injection Systems (Non-electronic Fuel Injectors, In-Line Fuel Injection Pump-Governed Electronically) with required sub-systems on IC engine.
Technical Paper

An Integrated Test Facility for Suspension Dampers of Commercial Vehicle

2018-04-03
2018-01-1383
In the present scenario, delivering the right product at the right time is very crucial in automotive sector to grab the competitive advantage. In the development stage, validation process devours most of the product development time. This paper focuses on reducing the validation time for damper (shock absorber) variants which is a vital component in commercial vehicle suspension system. New test facility is designed for both performance test and endurance testing of six samples simultaneously. In addition, it provides force trend monitoring during the validation which increases the efficiency of test with an enhanced control system. This new facility is also designed to provide side loading capability for individual dampers in addition to the conventional axial loading. The key parameter during validation is control of damper seal temperature within the range of 70-90°C. A cooling circuit is designed to provide an efficient temperature control by re-circulating cold water.
Technical Paper

An Optimum Solution to Meet the Thermal Load Challenge in a High Mobility Military Vehicle

2024-01-16
2024-26-0246
Military vehicles are intended to operate at rugged terrains in adverse environmental conditions. Unlike a regular truck, these vehicles are powered by a much bigger engine and transmission to meet the vehicle performance parameters. Thermal systems in these vehicles are challenging. With the adverse climatic condition and driving terrains, the criticality of Engine cooling system is intensified. In this paper, a Cooling system is finalized for a high mobility military vehicle with higher power engine, Automatic transmission and a hydraulic retarder. Thermal load cases are different for each. Modelling is done in thermal simulation software KULI. A steady state simulation is done for engine and automatic transmission where-as transient simulation is performed for retarder. The aim is to finalize a cooling system circuit consisting of radiator, oil to air cooler and oil to water cooler which are interconnected to meet the heat load demand of engine, transmission and retarder together.
Technical Paper

An Statistical Energy Analysis (SEA) based Methodology for Sound Package Optimization for Commercial Vehicles

2013-01-09
2013-26-0104
In recent years NVH has gained a lot of importance in the commercial vehicle industry as it contributes significantly towards user comfort and also towards the quality perception associated with a vehicle. The in-cabin noise of vehicles is critical towards the comfort and usability for the end user and the sound package installed on the vehicle plays a vital role in determining the levels associated with this attribute, especially the high frequency content. The paper discusses a methodology for optimizing the sound package for performance, cost and mass, for a truck. The approach uses a Statistical Energy Analysis (SEA) based optimization. A virtual SEA model is developed, which is correlated with actual test data. After establishing the correlation, an optimization study is carried out to identify the effectiveness of different materials and material combinations towards in-cabin noise.
Technical Paper

Assessment of Ride in a Heavy Commercial Truck Using Numerical Simulation Methods and Correlation with Test

2013-01-09
2013-26-0151
Demand for a refined Heavy Commercial Vehicle (HCV) is increasing due to rapid Indian economic growth, while the operating conditions and road infrastructures are still in a transition state of development. The same vehicle model will be operated in a range of operating road conditions like mining sites, construction sites, and highways with varying payloads and speeds by customers that are spread across the country. This variety of road inputs, payloads and speeds has made ride tuning as one of the major challenging process in the development process. This paper describes the attempt to assess ride comfort of HCV with fully suspended cab using numerical based simulation tools and its correlation with physical test results. The best suspension combination was finalized based on vertical and pitch acceleration at Center of Gravity (CG) of the cab. The trend of vertical acceleration obtained from the virtual model was correlated with the same obtained from physical test.
Technical Paper

Cab Suspension Optimization Using Matlab

2013-01-09
2013-26-0147
Driver's ride comfort is an important characteristic in heavy commercial vehicle cab design. Optimizing the ride behavior for different cab variants and vehicle applications is a challenge for cab design and development engineers. Suspension parameter tuning with physical test is time consuming and costly. Therefore, a lumped parameter quarter car model of suspended cab is developed in MATLAB® tool SimScape which includes cab mass, springs and dampers for predicting ride behavior as per ISO 2631. The study is done for a 25 t rigid truck. The input to the system is displacement at axles and the output is acceleration measured at cab and chassis level. This output is correlated with test data obtained from physical measurements using Power Spectral Density (PSD) curves, bode plots and level cross count. This proved that simple lumped parameter models which use very few input parameters can be effectively employed in analysis of cab ride in initial design phases.
Technical Paper

Composite Gas Cylinders for Automotive Vehicles - Current Status of Adoption of Technology and Way Forward

2013-01-09
2013-26-0074
With increasing concern on energy security and energy efficiency, automobile industry has been conducting many research on technologies aimed at reducing weight and reducing fuel consumption thereby reducing carbon footprint of the vehicle without compromising safety, efficiency and operational ability. Alternative fuel vehicles such as Compressed Natural Gas (CNG), Liquefied Petroleum Gas (LPG), Hydrogen, Hydrogen-CNG (HCNG) blends and Liquefied Natural Gas (LNG) vehicles are some of the best solutions to minimize the dependence on fossil fuels which are depleting fast. Gas cylinders are the heavier portion of alternative fuel systems which adds more weight to vehicle unladen weight. In search of innovative materials for gas cylinders, composite materials have been the front runner in reducing weight of the vehicle, thereby reducing fuel consumption significantly.
Technical Paper

Cost effective and Sustainable Alternate Material for Air Brake Tubings (ABT) in Commercial Vehicles

2014-09-30
2014-01-2409
The automotive industry is constantly looking for new alternate material and cost is one of the major driving factors for selecting the right material. ABT is a safety critical part and care has to be taken while selecting the appropriate material. Polyamide (PA12) [1] is the commonly available material which is currently used for ABT applications. Availability and material cost is always a major concern for commercial vehicle industries. This paper presents the development of ABT with an alternative material which has superior heat resistance. Thermoplastic Elastomer Ether Ester Block Copolymer (TEEE) [3] materials were tried in place Polyamide 12 for many good reasons. The newly employed material has better elastic memory and improved resistance to battery acid, paints and solvents. It doesn't require plasticizer for extrusion process because of which it has got excellent long term flexibility and superior kink resistance over a period of time.
Technical Paper

Data Acquisition and Failure Simulation of Metal Bumper for Heavy Commercial Vehicle

2017-03-28
2017-01-0381
This abstract work describes a method of data acquisition and validation procedure followed for a metal bumper used in commercial vehicle application. Covariance is considered as major phenomenon for repeatable measurements in proving ground data acquisition and it is to be maintained less than 0.05. In this project covariance of data acquisition is analyzed before physical simulation of acquired data. In addition to that, multiple testing conditions like uni-axial and bi-axial testing were carried out to attain the failure. PG data is used for bi-axial vibration test and conventional constant spectrum signal (CSD signal) is used for uni-axial vibration test. Target duration for uni-axial test (Z direction) was arrived using pseudo damage calculation. Strain gauges were installed in failure locations to compare PG data and rig data as well as to calculate strain life. Failures were simulated in bi-axial vibration test.
Technical Paper

Design and Development of Front Air Suspension for Front Engine Bus with Floor at Entry Plus One Step

2012-09-24
2012-01-1934
The automotive industry is heading towards introduction of newer and newer technology aimed at providing better comforts and value to the end user. The public/ private transport vehicles in urban/rural areas with FE has wide level of acceptance in South East Asian countries. The acceptance of FE buses is mainly because of the ram air cooling of the engine, lesser maintenance, higher fuel efficiency etc whereas rear engine buses with entry plus one step are deprived of these benefits. Hence, we have designed and developed a new Front Engine Semi -Low Floor bus having floor at E+1 step. The primary design challenge was to meet the uniform floor throughout the length of the vehicle. This uniqueness will help in easy ingress and egress of the passengers which helps in reducing the turn around rime of the vehicle. Other challenges includes, meeting the customer requirements in terms of application, load and duty cycle for this new design.
Technical Paper

Development of a Specific Durability Test Cycle for a Commercial Vehicle Based on Real Customer Usage

2013-01-09
2013-26-0137
Every class of commercial vehicle has an entirely different usage pattern based on customer application and needs. To perform accurate durability testing, these prototypes should run on real customer usage locations and loading conditions for the target life. However, this is time consuming and not practical, hence resulting in Proving Ground (PG) testing. It is also known that a standard PG durability cycle cannot be valid for every class of vehicle and every application. So a statistical approach was followed to develop an accelerated durability test cycle based on in-house PG test surfaces in order to match the real customer usage to the durability target life. This paper summarizes the methodology to develop Durability Validation test cycles for commercial vehicle based on the work carried out on a heavy duty tipper and an intermediate commercial vehicle.
Technical Paper

Driveline Optimization to Reduce the Noise in 4X4 Heavy Commercial Vehicle

2020-09-15
2020-01-2246
One of the important factors strongly required by customers nowadays is lower noise and vibration in vehicle. In this paper the prime focus is made on the study of effect of driveline angles on the noise and vibration behavior in a 4X4 configuration commercial vehicle. The impact of propeller shaft angles in the transfer of driveline excitations to the transmission and the resulting noise and vibration is studied. An abnormal noise was perceived from transmission and the root cause was investigated for the same. These excitations were high due to the higher driveline angles as this was design requirement to maintain higher ground clearance. A two-stage approach was adopted to modify the effect (transmission) and cause (propeller shaft angle) there by reducing the abnormal noise and vibration perceived in the vehicle.
Technical Paper

Durability Analysis of a Bus by Virtual Test Model (VTM)

2013-09-24
2013-01-2378
In this work, durability of the bus structure is evaluated with a Virtual Test Model (VTM).Full vehicle Multi Body Dynamics (MBD) model of the bus is built, with inclusion of flexibility of the bus structure to capture structural modes. Component mode synthesis method is used for creation of flexible model for use in MBD. Load extraction is done by performing MBD analysis with measured wheel inputs. Modal Superposition Method (MSM) is employed in FE along with these extracted loads for calculation of modal transient dynamic stress response of the structure. e-N based fatigue life is estimated. The estimated fatigue life from the modal superposition method show good correlation with the physical test results done in 6-poster test rig.
Technical Paper

Durability Enhancement of Spring Seat in Bogie Suspension

2013-11-27
2013-01-2848
Spring seat plays major role in bogie suspension; which is guiding and controlling the leaf spring for better suspension and also to withstand the compressive load from leafs. Currently used spring seats are failing frequently in medium and heavy duty vehicles, which lead to customer concerns by higher idle time and part replacement cost. Thickness of the spring seat can't be increased by large extent due to packaging constraints in the vehicle. Stress levels identified by FEA method are found higher than the current material capacity. With these constraints, the spring seat has been re-designed with improved strength and ductility of material by modern technology - Austempered Ductile Iron (ADI). The parts have been developed and assembled in various tipper applications and performance was studied. The developed spring seat shows five times superior durability compare to existing design.
Technical Paper

Durability Test Sequence and Target Generation for Variants among Commercial Vehicles

2013-09-24
2013-01-2377
Based on customer application and loading condition, each Commercial Vehicle model has an entirely different usage pattern. To perform accurate durability validation, each vehicle model prototype should run on actual customer usage locations and loading conditions for the durability target kilometers. But it is time consuming and not practical. So a statistical approach is followed to generate the accelerated durability test sequence and target on in-house Proving Ground tracks to match the real customer usage for the durability target kilometers. Again a single durability test sequence and target cannot be followed for all vehicle models due to the variability in customer usage. For that, specific durability test sequence and target need to be established for every class of commercial vehicle. This paper summarizes the methodology to develop Durability test sequence and target for commercial vehicle based on the work carried out on variants of medium and heavy duty trucks.
Technical Paper

Empirical Study of Vehicle Parameters and Optimization for Roll, Pitch, Bounce and Dive Behavior on Commercial Vehicles

2010-04-12
2010-01-0392
The primary factors influencing vehicle's dynamic behavior are the vehicle hard point definition, driver behavior and road inputs. The more the latter two are random and incorrigible in nature, the former one is quantifiable and can be controlled from designer's standpoint. In this paper, we have made an attempt to set targets to the vehicle hard point definition and thereby to optimize the vehicle for better ride behavior. This approach hence helped to converge to vehicle specifications set fundamentally designed to respond to random operating conditions and driving behavior intelligently. The work also involves study of various methodologies to predict roll, pitch, bounce and dive behaviors on a typical commercial passenger vehicle and is concluded by a sensitivity analysis to understand significance of these hard points on vehicle's real time behavior.
Technical Paper

Evaluation of Bus Ventilation Methods Using CFD

2013-01-09
2013-26-0043
Non air-conditioned buses constitute a major portion of public transportation facilities in many countries across the world. Inadequate cabin air circulation is a major cause of passenger discomfort in these buses. The aim of this study is to model the air flow pattern inside the passenger compartment of a bus and to establish the effect of solutions such as roof vents in improving the air circulation. RANS based CFD simulations with Shear Stress Transport (SST) turbulence model have been carried out using a commercial CFD solver. The CFD methodology has been verified by comparing results with experimentally validated LES simulation results available in literature. The vehicle model used in this study was the shell structure of a bus with an overall length of 7 m and a wheel base of 3.9 m. Simulations were carried out for a four vent configuration which showed an increase of 131% in the average in-cabin air velocity over the baseline model without any roof-vents.
X