Refine Your Search

Topic

Author

Search Results

Technical Paper

A CFD/SEA Approach for Prediction of Vehicle Interior Noise due to Wind Noise

2009-05-19
2009-01-2203
For most car manufacturers, aerodynamic noise is becoming the dominant high frequency noise source (> 500 Hz) at highway speeds. Design optimization and early detection of issues related to aeroacoustics remain mainly an experimental art implying high cost prototypes, expensive wind tunnel sessions, and potentially late design changes. To reduce the associated costs as well as development times, there is strong motivation for the development of a reliable numerical prediction capability. The goal of this paper is to present a computational approach developed to predict the greenhouse windnoise contribution to the interior noise heard by the vehicle passengers. This method is based on coupling an unsteady Computational Fluid Dynamics (CFD) solver for the windnoise excitation to a Statistical Energy Analysis (SEA) solver for the structural acoustic behavior.
Technical Paper

A Combined Computational-Experimental Approach for Modelling of Coupled Vibro-Acoustic Problems

2013-05-13
2013-01-1997
Over the past 30 years, the computer-aided engineering (CAE) tools have been applied extensively in the automotive industry. In order to accelerate time-to-market while coping with legal limits that have become increasingly restrictive over the last decades, CAE has become an indispensable tool covering all major fields in a modern automotive product design process. However, when tackling complex real-life engineering problems, the computational models might become rather involved and thus less efficient. Therefore, the overall trend in the automotive industry is currently heading towards combined approaches, which allow the best of the both worlds, namely the experimental measurement and numerical simulation, to be merged into one integrated scheme. In this paper, the so-called patch transfer function (PTF) approach is adopted to solve coupled vibro-acoustic problems. In the PTF scheme, the interfaces between fluid and structure are discretised in terms of patches.
Technical Paper

A Fluid-Structure Interaction Scheme for Prediction of Flow-Induced Low Frequency Booming Noise

2018-06-13
2018-01-1521
The analysis of the acoustic behavior of flow fields has gained importance in recent years, especially in the automotive industry. The comfort of the driver is heavily influenced by the noise levels and characteristics, especially during long distance drives. Simulation tools can help to analyze the acoustic properties of a car at an early stage of the development process. This work focuses on the low-frequency sound effects, which can be a significant noise component under certain operating conditions. As a first step in the fluid-structure interaction workflow, the flow around a series-production vehicle is simulated, including passenger cabin and underhood flow. The complexity of this model poses extensive demands on the simulation software, concerning meshing, turbulence modeling and level of parallelism. We conducted a transient simulation of the compressible fluid flow, using a hybrid RANS/LES approach.
Technical Paper

A Modern Development Process to Bring Silence Into Interior Components

2007-04-16
2007-01-1219
Comfort and well-being have always been connected with a flawless interior acoustic, free of any background noise or BSR, (buzz, squeak and rattle). BSR noises dominate the interior acoustic and represent one of the main sources for discomfort often causing considerable warranty costs. Traditionally BSR issues have been identified and rectified through extensive hardware testing, which by its nature intensifies toward the end of the car development process. In the following paper the integration of a virtual BSR validation technique in a modern development process by the use of appropriate CAE methods is presented. The goal is to shift, in compliance with the front loading concept, the development activities into the early phase. The approach is illustrated through the example of an instrument panel, from the early concept draft for single components to an assessment of the complete assembly.
Technical Paper

A New Optimization Approach in the Field of Structural-Acoustics

2000-03-06
2000-01-0729
It is shown in how far modal correction techniques can contribute to reduce the CPU effort in the scope of numerical structural-acoustic investigations. Due to this technique a quasi-online interactive acoustic optimization of a basic system configuration can be achieved. In this context special focus is pointed on structural optimization aspects. Finally, the limits of validity as to the accuracy of the results obtained by the modal correction approach in the case of larger modifications are determined.
Technical Paper

A Stochastic Virtual Testing Approach in Vehicle Passive Safety Design: Effect of Scatter on Injury Response

2005-04-11
2005-01-1763
Virtual testing has grown to be an efficient tool in vehicle passive safety design. Most simulations currently are deterministic. Since the responses observed in real-life and standardized tests are greatly affected by scatter, a stochastic approach should be adopted in order to improve the predictability of the numerical responses with respect to the experimental data. In addition, an objective judgement of the performance of numerical models with respect to experimental data is necessary in order to improve the reliability of virtual testing. In the European VITES & ADVANCE project the software tool Adviser was developed in order to fulfil these two requirements. With Adviser, stochastic simulations can be performed and the quality of the numerical responses with respect to the experimental can be objectively rated using pre-defined and user-defined objective correlation criteria. The software Adviser was used to develop a stochastic HybridIII 50th% Madymo numerical model.
Technical Paper

Achievements and Exploitation of the AUTOSAR Development Partnership

2006-10-16
2006-21-0019
Reductions of hardware costs as well as implementations of new innovative functions are the main drivers of today's automotive electronics. Indeed more and more resources are spent on adapting existing solutions to different environments. At the same time, due to the increasing number of networked components, a level of complexity has been reached which is difficult to handle using traditional development processes. The automotive industry addresses this problem through a paradigm shift from a hardware-, component-driven to a requirement- and function-driven development process, and a stringent standardization of infrastructure elements. One central standardization initiative is the AUTomotive Open System ARchitecture (AUTOSAR). AUTOSAR was founded in 2003 by major OEMs and Tier1 suppliers and now includes a large number of automotive, electronics, semiconductor, hard- and software companies.
Technical Paper

Advanced Driver Assistance: Chances and Limitations on the Way to Improved Active Safety

2007-04-16
2007-01-1738
Advanced Driver Assistance systems support the driver in his driving tasks. They can be designed to enhance the driver's performance and/or to take over unpleasant tasks from the driver. An important optimization goal is to maintain the driver's activation at a moderate level, avoiding both stress and boredom. Functions requiring a situational interpretation based on the vehicle environment are associated with lower performance reliability than typical stability control systems. Thus, driver assistance systems are designed assuming that drivers will monitor the assistance function while maintaining full control over the vehicle, including the opportunity to override as required. Advanced driver assistance systems have a substantial potential to increase active safety performance of the vehicle, i.e., to mitigate or avoid traffic accidents.
Technical Paper

Advanced material technologies meeting the challenges of automotive engineering

2000-06-12
2000-05-0049
Advanced material technologies play a key role in automotive engineering. The main objective of the development of advanced material technologies for automotive applications is to promote the desired properties of a vehicle. It is characteristic of most materials in modern cars that they have been developed especially for automotive requirements. Requirements are not only set by the customer who expects the maximum in performance, comfort, reliability, and safety from a modern car. Existing legal regulations also have to be met, e.g., in the areas of environmental compatibility, resource preservation, and minimization of emissions. To achieve goals like weight reduction or increased engine performance permanent material developments are essential. In this paper, numerous examples chosen from body, suspension, and powertrain components show clearly how low weight technologies, better comfort, and high level of recyclability can be achieved by advanced material solutions.
Technical Paper

Advanced squeak and rattle noise prediction for vehicle interior development – numerical simulation and experimental validation

2024-06-12
2024-01-2925
Squeak and rattle (SAR) noise audible inside a passenger car causes the product quality perceived by the customer to deteriorate. The consequences are high warranty costs and a loss in brand reputation for the vehicle manufacturer in the long run. Therefore, SAR noise must be prevented. This research shows the application and experimental validation of a novel method to predict SAR noise on an actual vehicle interior component. The novel method is based on non-linear theories in the frequency domain. It uses the harmonic balance method in combination with the alternating frequency/time domain method to solve the governing dynamic equations. The simulation approach is part of a process for SAR noise prediction in vehicle interior development presented herein. In the first step, a state-of-the-art linear frequency-domain simulation estimates an empirical risk index for SAR noise emission. Critical spots prone to SAR noise generation are located and ranked.
Technical Paper

An Advanced Process for Virtual Evaluation of the Dimensional Resistance of Interior Parts

2006-04-03
2006-01-1475
The importance of the automotive interior as a characteristic feature in the competition for the goodwill of the customer has increased significantly in recent years. Whilst there are established, more or less efficient CAE processes for the solution of problems in the areas of occupant safety and service strength, until now the implementation of CAE in themes such as dimensional stability, warpage and corrugation1 of plastic parts has been little investigated. The developmental support in this field is predominantly carried out by means of hardware tests. Real plastic components alter their form as a result of internal forces often during the first weeks following production. The process, known as “creep”, can continue over an extended period of time and is exacerbated by high ambient temperatures and additional external loads stemming from installation and post assembly position.
Technical Paper

Analysis of Underbody Windnoise Sources on a Production Vehicle using a Lattice Boltzmann Scheme

2007-05-15
2007-01-2400
A computational analysis of underbody windnoise sources on a production automobile at 180 km/h free stream air speed and 0° yaw is presented. Two different underbody geometry configurations were considered for this study. The numerical results have been obtained using the commercial software PowerFLOW. The simulation kernel of this software is based on the numerical scheme known as the Lattice-Boltzmann Method (LBM), combined with a two-equation RNG turbulence model. This scheme accurately captures time-dependent aerodynamic behavior of turbulent flows over complex detailed geometries, including the pressure fluctuations causing wind noise. Comparison of pressure fluctuations levels mapped on a fluid plane below the underbody shows very good correlation between experiment and simulation. Detailed flow analysis was done for both configurations to obtain insight into the transient nature of the flow field in the underbody region.
Technical Paper

Approach to a Design of Experiments for Sound Quality Evaluations of Car Interior Adjusting Noises

2009-05-19
2009-01-2184
A widely common principle of sound quality engineering is the development of objective measures determining human perception. Beside stationary sound parts, auditory events that are based on time-variant attributes have a traceable influence on human perception, particularly in the field of product sound quality. In this paper the significance and identification of the relevant sound quality parameters for power seat adjusters are investigated with a specific design of experiments (DoE). This methodology was used to advance the efficiency of subjective tests. The necessity of an efficient design is given through a relatively high number of variable parameters and, furthermore, through the demands of a qualitative experiment with limited effort for each subject in the listening tests. Instead of investigating randomly picked sounds this approach concentrates on a systematic scanning of the parameter space.
Technical Paper

BMW's Energy Strategy - Promoting the Technical and Political Implementation

2000-03-06
2000-01-1324
BMW can look back on 20 years of research activities on hydrogen propulsion systems. Hydrogen fuel is the only means of offering pure driving pleasure on the basis of a sustainable energy loop. As the hydrogen era is still quite a while away the BMW Energy Strategy „Via Natural Gas to Hydrogen” has been developed. The first step was to build series-production compressed natural gas (CNG) cars back in 1995. By switching to liquefied natural gas (LNG) not only is the cruising range tripled but technologically the final stepping-stone is reached in preparing the way for liquefied hydrogen. BMW's automotive and drive technology for hydrogen is now available and ready to move out of the laboratory on to the road. At Munich Airport a BMW „Clean Energy” car is already providing shuttle services. Its fuel is supplied by the world's first public filling station for liquefied hydrogen.
Technical Paper

CAE Driven Passive Safety Development for a Sports Activity Vehicle (SAV)

2000-12-01
2000-01-3320
Sport Activity Vehicle (SAV) share a growing market of an entirely new class of vehicles. Outstanding comfort in traditional on-road and also off-road terrain combined with leading edge technology are basic features of this concept. But in addition to that, the SAV has to offer the same overall safety features, expected by e.g. a luxury-segment sedan. A way to ensure the BMW X5 becoming one of the safest cars was the consequent use of simulation techniques in passive safety development. This paper deals with introduction of a CAE driven development process for passive safety in the BMW X5 project, focusing on examples in front and side impact.
Technical Paper

Computational Approach for Entry Simulation

2006-07-04
2006-01-2358
A comprehensive experimental study was conducted to investigate human movements when entering a vehicle. The primary goal of this study was to understand the influence of environmental changes on entry motions selected by a driver to enter a vehicle. The adjustable hardware setup “VEMO” (Variable Entry Mockup) was used for the experiments. With VEMO it is possible to simulate different types and classes of vehicle configurations. Around 30 test persons of different anthropometry participated in the experiments. The visual measurement system VICON was used for motion capturing, motion data cleaning and biomechanical analysis. The results corroborate the theory of leading body parts (LBPs) i.e. body parts that control targeted movement of the entire body. It could be demonstrated how motion patterns of LBPs, including spatial and dynamic characteristics such as orientation and velocity, respond to modifications of the geometrical environment.
Technical Paper

Efficient Modeling and Simulation of the Transverse Isotropic Stiffness and Damping Properties of Laminate Structures Using Finite Element Method

2020-09-30
2020-01-1573
The Noise Vibration and Harshness (NVH) characteristics and requirements of vehicles are changing as the automotive manufacturers turn their focus from developing and producing cars propelled by internal combustion engines (ICE) to electrified vehicles. This new strategic orientation enables them to offer products that are more efficient and environmentally friendly. Although electric powertrains have many advantages compared to their established predecessors they also bring new challenges that increase the difficulty of matching the high quality requirements of premium car producers especially regarding NVH. Electric motors are one of the most important sources of vibrations in electric vehicles.
Technical Paper

Enhancing Navigation Systems with Quality Controlled Traffic Data

2008-04-14
2008-01-0200
As the popularity of vehicle navigation systems rises, incorporating Real Time Traffic Information (RTTI) has been shown to enhance the systems' value by helping drivers avoid traffic delays. As an innovative premium automaker, BMW has developed a testing process to acquire and analyze RTTI data in order to ensure delivery of a high quality service and to enhance the customer experience compared to audible broadcast services. With a methodology to obtain valid and repeatable RTTI data quality measurements, BMW and its service partner, Clear Channel's Total Traffic Network (TTN), can improve its offered service over time, implement corrective measures when appropriate, and confidently ensure the service meets its premium objectives. BMW has partnered with TTN and SoftSolutions GmbH to implement a traffic data quality process and software tools.
Technical Paper

Ergonomic Layout Process for a Driver Working Place in Cars

2006-07-04
2006-01-2313
During early phases of interior car layout a lot of different aspects have to be considered like crashworthiness, regulations, philosophy of the company etc.. Ergonomic aspects do not always play the most important role in these cases. Since aspects of comfort in cars are getting more and more important in nowadays these aspects should be taken into account very early in the interior car layout process. This paper shows a way to design the interior layout of a car from scratch for a good postural comfort for all anthropometries with the aid of a digital human model (RAMSIS). The novelty of this approach is to use the digital human model to design the interior and not to verify or correct an existing one.
Technical Paper

Frequency and Temperature Dependent Stiffness and Damping Properties of Reduced Viscoelastic Structures Using Component Mode Synthesis (CMS)

2018-06-13
2018-01-1498
Model Order Reduction (MOR) methods such as Component Mode Synthesis (CMS) have been used in order to simulate large linear dynamic systems for many years and have reached a considerable level of saturation. These reduction methods have many advantages such as minimizing computational costs but also have restrictions. One of their disadvantages is that material damping characteristics can only be defined in form of Rayleigh damping. Another disadvantage is that the reduced order model can only represent one state of the structure determined in the generation process of the reduced matrices. In this paper we present a way to consider material damping in reduced matrices that contain one or more materials having different damping characteristics without the disadvantages of using Rayleigh damping.
X