Refine Your Search

Topic

Author

Search Results

Technical Paper

A Fluid-Structure Interaction Scheme for Prediction of Flow-Induced Low Frequency Booming Noise

2018-06-13
2018-01-1521
The analysis of the acoustic behavior of flow fields has gained importance in recent years, especially in the automotive industry. The comfort of the driver is heavily influenced by the noise levels and characteristics, especially during long distance drives. Simulation tools can help to analyze the acoustic properties of a car at an early stage of the development process. This work focuses on the low-frequency sound effects, which can be a significant noise component under certain operating conditions. As a first step in the fluid-structure interaction workflow, the flow around a series-production vehicle is simulated, including passenger cabin and underhood flow. The complexity of this model poses extensive demands on the simulation software, concerning meshing, turbulence modeling and level of parallelism. We conducted a transient simulation of the compressible fluid flow, using a hybrid RANS/LES approach.
Technical Paper

AJ (Mg-Al-Sr) Alloy Mechanical Properties: From Fatigue to Crack Propagation

2005-04-11
2005-01-0729
In addition to the creep properties, the fatigue properties are essential for the design of a power-train component in Mg which is operated at elevated temperatures. In case of the new BMW I6 composite Mg/Al crankcase using the AJ alloy system, material testing focused on both subjects. The basic mechanical properties were determined from separately die cast samples and also from samples machined out from high-pressure die cast components. Tensile, high cycle fatigue properties, low cycle fatigue and crack propagation properties were established and analyzed within the technical context for power-train applications reflected in the temperature and load levels. The aspects of mean stress influence, notch sensitivity and crack propagation are evaluated to estimate the performances of the AJ62A alloy system.
Technical Paper

AJ (Mg-Al-Sr) Alloy System Used for New Engine Block

2004-03-08
2004-01-0659
AJ alloy is used with a new Aluminum-Magnesium Composite Design, which is an innovative approach to lightweight crankcase technology. The component is manufactured using high pressure die cast process. A wide range of chemical compositions was used to develop a good understanding of the behavior of this alloy system (castability, thermophysical, mechanical, microstructure). The basic mechanical properties were determined from separately die cast samples and also from samples machined out from high pressure die cast components. Tensile, creep, bolt load retention/relaxation and high cycle fatigue properties were established and analyzed using multivariate analysis and statistical approach. This methodology was used to select the optimal chemical composition to match the requirements. The sensitivity of the alloy to heat exposure was investigated for both mechanical properties and microstructure.
Technical Paper

Achievements and Exploitation of the AUTOSAR Development Partnership

2006-10-16
2006-21-0019
Reductions of hardware costs as well as implementations of new innovative functions are the main drivers of today's automotive electronics. Indeed more and more resources are spent on adapting existing solutions to different environments. At the same time, due to the increasing number of networked components, a level of complexity has been reached which is difficult to handle using traditional development processes. The automotive industry addresses this problem through a paradigm shift from a hardware-, component-driven to a requirement- and function-driven development process, and a stringent standardization of infrastructure elements. One central standardization initiative is the AUTomotive Open System ARchitecture (AUTOSAR). AUTOSAR was founded in 2003 by major OEMs and Tier1 suppliers and now includes a large number of automotive, electronics, semiconductor, hard- and software companies.
Technical Paper

Advanced Driver Assistance: Chances and Limitations on the Way to Improved Active Safety

2007-04-16
2007-01-1738
Advanced Driver Assistance systems support the driver in his driving tasks. They can be designed to enhance the driver's performance and/or to take over unpleasant tasks from the driver. An important optimization goal is to maintain the driver's activation at a moderate level, avoiding both stress and boredom. Functions requiring a situational interpretation based on the vehicle environment are associated with lower performance reliability than typical stability control systems. Thus, driver assistance systems are designed assuming that drivers will monitor the assistance function while maintaining full control over the vehicle, including the opportunity to override as required. Advanced driver assistance systems have a substantial potential to increase active safety performance of the vehicle, i.e., to mitigate or avoid traffic accidents.
Technical Paper

Advanced material technologies meeting the challenges of automotive engineering

2000-06-12
2000-05-0049
Advanced material technologies play a key role in automotive engineering. The main objective of the development of advanced material technologies for automotive applications is to promote the desired properties of a vehicle. It is characteristic of most materials in modern cars that they have been developed especially for automotive requirements. Requirements are not only set by the customer who expects the maximum in performance, comfort, reliability, and safety from a modern car. Existing legal regulations also have to be met, e.g., in the areas of environmental compatibility, resource preservation, and minimization of emissions. To achieve goals like weight reduction or increased engine performance permanent material developments are essential. In this paper, numerous examples chosen from body, suspension, and powertrain components show clearly how low weight technologies, better comfort, and high level of recyclability can be achieved by advanced material solutions.
Technical Paper

An Advanced Process for Virtual Evaluation of the Dimensional Resistance of Interior Parts

2006-04-03
2006-01-1475
The importance of the automotive interior as a characteristic feature in the competition for the goodwill of the customer has increased significantly in recent years. Whilst there are established, more or less efficient CAE processes for the solution of problems in the areas of occupant safety and service strength, until now the implementation of CAE in themes such as dimensional stability, warpage and corrugation1 of plastic parts has been little investigated. The developmental support in this field is predominantly carried out by means of hardware tests. Real plastic components alter their form as a result of internal forces often during the first weeks following production. The process, known as “creep”, can continue over an extended period of time and is exacerbated by high ambient temperatures and additional external loads stemming from installation and post assembly position.
Journal Article

An Approach to Model Sheet Failure After Onset of Localized Necking in Industrial High Strength Steel Stamping and Crash Simulations

2008-04-14
2008-01-0503
In large-scale industrial simulations the numerical prediction of fracture in sheet metal forming operations as well as in crash events is still a challenging task of high social and economic relevance. Among several approaches presented in literature, the authors and their colleagues developed a model which accounts each for three different mechanisms leading finally to fracture in thin sheet metals: the local instability (necking), ductile normal fracture and ductile shear fracture. The focus of this paper is to develop and validate a new approach to improve the predictive capabilities for fracture triggered by localized necking for a wide variety of steel grades. It is well known that after the onset of a local instability additional strain is still necessary to induce fracture. In a numerical simulation using shell elements this post instability strain becomes of increasing importance when the ratio of the characteristic shell element edge length to its thickness decreases.
Technical Paper

BMW's Magnesium-Aluminium Composite Crankcase, State-of-the-Art Light Metal Casting and Manufacturing

2006-04-03
2006-01-0069
This paper presents new aspects of the casting and manufacturing of BMWs inline six-cylinder engine. This new spark-ignition engine is the realization of the BMW concept of efficient dynamics at high technological level. For the first time in the history of modern engine design, a water-cooled crankcase is manufactured by magnesium casting for mass production. This extraordinary combination of magnesium and aluminium is a milestone in engine construction and took place at the light-metal foundry at BMW's Landshut plant. This paper gives a close summary about process development, the constructive structure, and the manufacturing and testing processes.
Technical Paper

Continuos Failure Prediction Model for Nonlinear Load Paths in Successive Stamping and Crash Processes

2001-03-05
2001-01-1131
The validity of numerical simulations is still limited by the unknown failure of materials when nonlinear load paths in successive stamping and crash processes occur. Localized necking is the main mechanism for fractures in ductile sheet metal. The classical forming limit curve (FLC) is limited to linear strain paths. To include the effects of nonlinear strain paths a theoretical model for instability (algorithm CRACH) has been used. The algorithm has been developed on the basis of the Marciniak model [8]. The calibration and validation of this approach is done by a set of multistage experiments under static and dynamic strain rates for a mild steel.
Technical Paper

Cylinder Heads for High Power Gasoline Engines - Thermomechanical Fatigue Life Prediction

2006-04-03
2006-01-0541
Increasing demands on engine efficiency and specific power have resulted in progressively higher loadings on internal components of combustion engines. Therefore the durability assessment of such components is increasingly in demand, triggered by both reliability and economic requirements. Within this context the TMF cylinder head simulation process established at BMW is presented in the following article. The numerical model is able to account for thermo-mechanical loading histories. These lead to a transient evolution of the material characteristics during the lifetime due to aging in aluminum alloys. Therefore a viscoplastic constitutive model is coupled with an aging model to handle the change in precipitation structure and the effect on the material properties, especially for non heat-treated secondary aluminum alloys. The local damage evolution is modeled based on the growth of micro cracks.
Technical Paper

Development and Application of a New Mass Spectrometer Based Measurement System for Fast Online Monitoring of Oil Emission in the Raw Exhaust Gas of Combustion Engines

2002-10-21
2002-01-2713
An increasing environmental consciousness as well as the awareness for sustained preservation of natural resources causes new regulations for emissions and great efforts for fuel economy and increasing oil service intervals. For a better understanding of the process generating pollutants, the emissions of every phase of the combustion cycle have to be monitored online. Moreover, it is important to measure the raw exhaust gas during different driving cycles and investigate the influence of different parameters as for example changing engine operating conditions. The new mass spectrometer (MS) based measurement system allows the direct detection of unburned gaseous oil HC without tracers. The gas inlet system enables crank angle resolved monitoring of different raw exhaust gas compounds in the exhaust manifold or directly in the cylinder.
Technical Paper

Enhancing Navigation Systems with Quality Controlled Traffic Data

2008-04-14
2008-01-0200
As the popularity of vehicle navigation systems rises, incorporating Real Time Traffic Information (RTTI) has been shown to enhance the systems' value by helping drivers avoid traffic delays. As an innovative premium automaker, BMW has developed a testing process to acquire and analyze RTTI data in order to ensure delivery of a high quality service and to enhance the customer experience compared to audible broadcast services. With a methodology to obtain valid and repeatable RTTI data quality measurements, BMW and its service partner, Clear Channel's Total Traffic Network (TTN), can improve its offered service over time, implement corrective measures when appropriate, and confidently ensure the service meets its premium objectives. BMW has partnered with TTN and SoftSolutions GmbH to implement a traffic data quality process and software tools.
Technical Paper

Ergonomic Layout Process for a Driver Working Place in Cars

2006-07-04
2006-01-2313
During early phases of interior car layout a lot of different aspects have to be considered like crashworthiness, regulations, philosophy of the company etc.. Ergonomic aspects do not always play the most important role in these cases. Since aspects of comfort in cars are getting more and more important in nowadays these aspects should be taken into account very early in the interior car layout process. This paper shows a way to design the interior layout of a car from scratch for a good postural comfort for all anthropometries with the aid of a digital human model (RAMSIS). The novelty of this approach is to use the digital human model to design the interior and not to verify or correct an existing one.
Technical Paper

Frequency and Temperature Dependent Stiffness and Damping Properties of Reduced Viscoelastic Structures Using Component Mode Synthesis (CMS)

2018-06-13
2018-01-1498
Model Order Reduction (MOR) methods such as Component Mode Synthesis (CMS) have been used in order to simulate large linear dynamic systems for many years and have reached a considerable level of saturation. These reduction methods have many advantages such as minimizing computational costs but also have restrictions. One of their disadvantages is that material damping characteristics can only be defined in form of Rayleigh damping. Another disadvantage is that the reduced order model can only represent one state of the structure determined in the generation process of the reduced matrices. In this paper we present a way to consider material damping in reduced matrices that contain one or more materials having different damping characteristics without the disadvantages of using Rayleigh damping.
Technical Paper

Frequency-based substructuring for virtual prediction and uncertainty quantification of thin-walled vehicle seat structures

2024-06-12
2024-01-2946
Finite element simulation (FE) makes it possible to analyze the structural dynamic behavior of vehicle seat structures in early design phases to meet Noise-Vibration-Harshness (NVH) requirements. For this purpose, linear simulations are usually used, which neglect many nonlinear mechanical properties of the real structure. These models are trimmed to fit global vibration behavior based on the complex description of contact or jointed definitions. Targeted design is therefore only possible to a limited extent. The aim of this work is to characterize the entire seat structure and its sub-components in order to identify the main contributors using experimental and simulative data. The Lagrange Multiplier Frequency Based Substructuring (LM-FBS) method is used for this purpose. Therefore, the individual subsystems of seat frame, seat backrest and headrest are characterized under different conditions.
Technical Paper

Integrating CE-based Applications into the Automotive HMI

2007-04-16
2007-01-0446
Being able to integrate consumer electronics (CE) devices into the automobile is an increasingly important goal. In this paper, we focus on the HMI (human machine interaction) aspects of consumer electronics in the car. We describe the requirements concerning HMI integration of consumer electronics and offer several possible solutions. One of the requirements is minimal driver distraction. A desired property in this context concerns the mental model that the user builds of the service that is to be operated: ideally, this model (i.e., appearance and interaction logic) need not change when integrating the service into the automobile, even though the operating elements differ considerably (e.g., touch screen vs. iDrive commander). A further requirement is posed by the dynamic nature of CE services: often, they are not known at design/deploy time of the HMI software of the automobile.
Technical Paper

Light Weight Engine Construction through Extended and Sustainable Use of Mg-Alloys

2006-04-03
2006-01-0068
Eight partners from Europe and one from North America have joined efforts in a EU-supported project to find new ways for sustainable production of Mg-based engine blocks for cars. The ultimate aim of the work is to reduce vehicle weight, thereby reducing fuel consumption and CO2 emissions from operation of the vehicle. Four new magnesium alloys are considered in the project and an engine block has been series cast - 20 each in two alloys. An extensive mechanical testing program has been initiated to identify in particular the high temperature limits of the four alloys and a significant experimental study of proper bolt materials for joining is being done in parallel. Engine redesign and life cycle analysis has also been completed to secure the future sustainable exploitation of the project results. This paper presents an overview of the work and results obtained until now - 3 months before the ending date of the project.
X