Refine Your Search

Search Results

Viewing 1 to 8 of 8
Technical Paper

A Mathematical Model for In-Cylinder Catalytic Oxidation of Hydrocarbons in Spark-Ignition Engines

1996-05-01
961196
Our earlier experimental study has shown that exhaust unburnt hydrocarbon emissions from spark-ignition engines can be reduced effectively by using in-cylinder catalysts on the surface of the piston top-land crevice. In order to improve the understanding of the process and mechanism by means of which unburnt hydrocarbon emissions are reduced, a phenomenological mathematical model was developed for catalytic oxidation processes in the piston-ring-pack crevice. This paper describes in details the modelling of the processes of the gas flow, mass diffusion and reaction kinetics in the crevices. The flow in the crevices is assumed to be isothermal and at the temperature of the piston crown surface. The overall rate of reaction is calculated using expressions for mass diffusion for laminar flows in channels and a first-order Arrhenius-type expression for catalytic reaction kinetics of hydrocarbon oxidation over platinum.
Technical Paper

A Study of Turbulent Flame Development with Ethanol Fuels in an Optical Spark Ignition Engine

2014-10-13
2014-01-2622
The work was concerned with experimental study of the turbulent flame development process of ethanol fuels in an optically accessed spark ignition research engine. The fuels were evaluated in a single cylinder engine equipped with full-bore overhead optical access and operated at typical stoichiometric part-load conditions. High-speed natural light (or chemiluminescence) imaging and simultaneous in-cylinder pressure data measurement and analysis were used to understand the fundamental influence of both low and high ethanol content on turbulent flame propagation and subsequent mass burning. Causes for the difference in cyclic variations were evaluated in detail, with comparisons made to existing burning velocity correlations where available.
Technical Paper

Analysis of Swirl in Unsteady Flow and its Effect on Diesel Combustion

1992-09-01
921643
The paper first describes three linked computational models which allow the estimation of: swirl generated during the induction process; the modification of swirl with bowl-in-piston combustion chambers during compression as the piston approaches top dead centre; the interaction of the fuel sprays with swirl including relative crosswind velocities between the air and the fuel sprays and spray impingement velocities. The paper then presents experimental results from a single-cylinder direct injection diesel engine, during which both the fuel spray and swirl parameters were changed systematically. Finally, the predicted spray impingement and crosswind velocities for this engine are correlated with the engine performance obtained experimentally, in particular, with fuel economy and smoke emission.
Technical Paper

Analysis of Tumble and Swirl Motions in a Four-Valve SI Engine

2001-09-24
2001-01-3555
Tumble and swirl motions in the cylinder of a four-valve SI engine with production type cylinder head were investigated using a cross-correlation digital Particle Image Velocimetry (PIV). Tumble motion was measured on the vertical symmetric plane of the combustion chamber. Swirl motion was measured on a plane parallel to the piston crown with one of intake ports blocked. Large-scale flow behaviours and their cyclic variations were analysed from the measured two-dimensional velocity data. Results show that swirl motion is generated at the end of the intake stroke and persists to the end of the compression stroke. Tumble vortex is produced in the early stage of the compression stroke and distorted in the late stage of the stroke. The cyclic variation of swirl motion is noticeable. The cyclic variation in tumble dominated flow field is much greater.
Technical Paper

Combustion Characteristics of CAI Combustion with Alcohol Fuels

2010-04-12
2010-01-0843
Due to its potential for simultaneous improvement in fuel consumption and exhaust emissions, controlled autoignition (CAI) combustion has been subject to continuous research in the last several years. At the same time, there has been a lot of interest in the use of alternative fuels in order to reduce reliance on conventional fossil fuels. Therefore, this experimental study has been carried out to investigate the effect of alcohol fuels on the CAI combustion process and on the resulting engine performance. The experimental work was conducted on an optical single cylinder engine with an air-assisted injector. To achieve controlled autoignition, residual gas was trapped in the cylinder by using negative valve overlap and an intake air heater was used to ensure stable CAI combustion in the optical engine. Methanol, ethanol and blended fuels were tested and compared with the results of gasoline.
Technical Paper

In-Cylinder Catalysts - A Novel Approach to Reduce Hydrocarbon Emissions from Spark-Ignition Engines

1995-10-01
952419
A novel approach was proposed and investigated to reduce unburned hydrocarbon emissions from spark-ignition engines using in-cylinder catalysts. The unburned hydrocarbons in spark-ignition engines arise primarily from sources near the combustion chamber walls, such as flame quenching at the entrance of crevice volumes and at the combustion chamber wall, and the absorption and desorption of fuel vapour into oil layers on the cylinder wall. The proximity of these sources of unburned hydrocarbons to the wall means that they can be reduced significantly by simply using in-cylinder catalysts on the combustion chamber walls, in particular on the surfaces of the crevice volumes. A platinum-rhodium coating was deposited on the top and side surfaces of the piston crown, and its effects on the engine combustion and emission characteristics were examined in this experimental investigation.
Technical Paper

Review of Induction System Design and a Comparison Between Prediction and Results from a Single Cylinder Diesel Engine

1992-09-01
921727
Induction tuning is now used on a wide range of spark ignition and diesel engines. It has also been the subject of research and publications over many years. The literature on induction tuning is reviewed here, and contradictions are identified and clarified. The use of resonator volume systems are also discussed and the various ways of modelling these systems are compared. In order to reconcile the differing theories, and to attempt to clarify the means by which induction tuning occurs, experiments have been undertaken with a single cylinder diesel engine. This was chosen as a single cylinder engine represents the simplest system, and a diesel engine does not have fuel in the induction system (which would otherwise modify the thermodynamic properties. The experimental measurements include the instantaneous air mass flow rate entering the induction system, and the pressure at the inlet port.
Technical Paper

The Modeling and Design of a Boosted Uniflow Scavenged Direct Injection Gasoline (BUSDIG) Engine

2015-09-01
2015-01-1970
Engine downsizing of the spark ignition gasoline engine is recognized as one of the most effective approaches to improve the fuel economy of a passenger car. However, further engine downsizing beyond 50% in a 4-stroke gasoline engine is limited by the occurrence of abnormal combustion events as well as much greater thermal and mechanical loads. In order to achieve aggressive engine downsizing, a boosted uniflow scavenged direct injection gasoline (BUSDIG) engine concept has been proposed and researched by means of CFD simulation and demonstration in a single cylinder engine. In this paper, the intake port design on the in-cylinder flow field and gas exchange characteristics of the uniflow 2-stroke cycle was investigated by computational fluid dynamics (CFD). In particular, the port orientation on the in-cylinder swirl, the trapping efficiency, charging efficiency and scavenging efficiency was analyzed in details.
X