Refine Your Search

Search Results

Viewing 1 to 4 of 4
Technical Paper

A Study on New Combustion Method of High Compression Ratio Spark Ignition Engine

2005-04-11
2005-01-0240
A new combustion method of high compression ratio SI engine was studied and proposed in order to achieve higher thermal efficiency of SI engine comparable to that of CI engine. Compression ratio of SI engine is generally restricted by the knocking phenomena. A combustion chamber profile and a cranking mechanism are studied to avoid knocking with high compression ratio. Since reducing the end-gas temperature will suppress knocking, a combustion chamber was considered to have a wide surface at the end-gas region. However, wide surface will lead to high heat loss, which may cancel the gain of higher compression ratio operation. Thereby, a special cranking mechanism was adopted which allowed the piston to move rapidly near TDC. Numerical simulations were performed to optimize the cranking mechanism for achieving higher thermal efficiency. An elliptic gear system and a leaf-shape gear system were employed in the simulations.
Technical Paper

Effect of Olefin Component Mixed to Gasoline on Thermal Efficiency in EGR Diluted Conditions Using Single-Cylinder Engine

2023-09-29
2023-32-0084
In internal combustion engine development, the ongoing research can be mainly classified into two categories based on the purpose: limiting exhaust emissions and searching for alternative fuels. One of the effective approaches reduce emissions is the improvement of thermal efficiency. Certain types of alternative fuels derived from renewable resources were estimated to confirm the thermal efficiency. This study uses a single-cylinder engine added with olefin and oxygenated additive fuel, such as 1-hexene, ethanol, and ETBE, to evaluate the parameters that affect thermal efficiency. Furthermore, the effects of various additive fuels are summarized and essential information is provided for determining next- generation fuel composition.
Technical Paper

In-Cylinder Optical Measurement for Analyzing Control Factor of Ignition Phenomena under Diluted Condition

2020-09-15
2020-01-2048
To increase thermal efficiency of internal combustion engines, dilution combustion systems, such as lean burn and exhaust gas recirculation systems, have been developed. These systems require spark-ignition coils generating large discharge current and discharge energy to achieve stable ignition under diluted mixture conditions. Several studies have clarified that larger discharge current increases spark-channel stretch and decreases the possibility of spark channel blow-off and misfire. However, these investigations do not mention the effect of larger discharge current and energy on the initial combustion period. The purpose of this study was to investigate the relation among dilution ratio, initial-combustion period, and coil specifications to clarify the control factor of the dilution limit.
Technical Paper

Measurement of Liquid Fuel Film Attached to the Wall in a Port Fueled SI Gasoline Engine

2023-10-24
2023-01-1818
Liquid fuel attached to the wall surface of the intake port, the piston and the combustion chamber is one of the main causes of the unburned hydrocarbon emissions from a port fueled SI engine, especially during transient operations. To investigate the liquid fuel film formation process and fuel film behavior during transient operation is essential to reduce exhaust emissions in real driving operations, including cold start operations. Optical techniques have been often applied to measure the fuel film in conventional reports, however, it is difficult to apply those previous techniques to actual engines during transient operations. In this study, using MEMS technique, a novel capacitance sensor has been developed to detect liquid fuel film formation and evaporation processes in actual engines. A resistance temperature detector (RTD) was also constructed on the MEMS sensor with the capacitance sensor to measure the sensor surface temperature.
X