Refine Your Search

Search Results

Viewing 1 to 3 of 3
Technical Paper

Fatigue Technology in Vehicle Development

2001-03-05
2001-01-4081
Modern approaches to durability assurance in ground vehicle design are reviewed in the context of recent developments in computer-based analytical and experimental tools for use by designers and development engineers. Examples, using an automotive wheel assembly, are presented to illustrate the application of fatigue analysis in product development. Major challenges associated with the linking of various design tools into integrated networks appropriately configured for industrial problem solving are discussed along with an assessment of the potential benefits to be gained from such integration.
Technical Paper

Parametric Analyses of Tracks and Tracklayers Update-Sample of Engineering Problems and Their Solutions in Off Road Locomotion

1986-09-01
861251
The original design-performance evaluation method of tracks and tracklaying vehicles, proposed by this writer during the WW II, was further developed and enhanced with new experience gained by many researchers. The method is based on the approximation of track action by a number of appropriate wheel actions. It is mathematically simple, and practically unique encompassing detailed track and road wheel geometry, wheel spacing, loads and load distribution together with regular soil strength parameters. It conforms methodologically with evaluation of pneumatic tires and rigid wheels, previously published in a series of SAE papers. The said papers and the present one form a concise engineering outline of Terramechanics for off-road locomotion.
Technical Paper

Put the Intelligence in the System, Not in the Vehicles

1999-08-17
1999-01-2953
A unique system would solve traffic, fossil-fuel depletion, and environmental problems. Dual-mode private and commercial vehicles would be manually driven on streets and automatically controlled on maglev guideways. Busses and freight vehicles without wheels or drivers also used. Proposed guideway speeds: 100kph in cities, and 325kph between cities. System would be safer and have much higher capacity than existing highways or proposed “smart car” systems. One-third meter clearance between cars to be achieved by linear synchronous-motor propulsion. Capacity of single 100kph guideway to equal that of twelve highway lanes, and one 325kph guideway would be equivalent to forty highway lanes.
X