Refine Your Search

Search Results

Viewing 1 to 16 of 16
Technical Paper

Advances of Durability of Ceramic Converter Systems

1996-10-01
962372
Governing bodies world-wide are setting increasingly tighter emission standards to help improve air quality. US and Californian LEV/ULEV standards are pace setting, European Stage II legislation has just become effective. In Brazil, the upcoming 1997 standards are also demanding for tighter emission control. The monolithic ceramic honeycomb catalytic converter -for more than the past 20 years- has been a reliable key element in the automotive emission control systems. In order to help meet tightened emission regulation as well to satisfy even more stringent durability requirement, an advanced thinwall ceramic Celcor XT has been developed for increased geometric surface area and reduced backpressure. The product properties as well as FTP and ECE emission and durability test results are being described in this paper. Converter system durability is also determined by robust canning and mounting systems. A durable mounting concept, especially for preconverters, is being described.
Journal Article

Analysis of the Emission Conversion Performance of Gasoline Particulate Filters Over Lifetime

2019-09-09
2019-24-0156
Gasoline particulate filters (GPF) recently entered the market, and are already regarded a state-of-the-art solution for gasoline exhaust aftertreatment systems to enable EU6d-TEMP fulfilment and beyond. Especially for coated GPF applications, the prognosis of the emission conversion performance over lifetime poses an ambitious challenge, which significantly influences future catalyst diagnosis calibrations. The paper presents key-findings for the different GPF application variants. In the first part, experimental GPF ash loading results are presented. Ash accumulates as thin wall layers and short plugs, but does not penetrate into the wall. However, it suppresses deep bed filtration of soot, initially decreasing the soot-loaded backpressure. For the emission calibration, the non-linear backpressure development complicates the soot load monitoring, eventually leading to compromises between high safety against soot overloading and a low number of active regenerations.
Technical Paper

Challenges of Particulate Number above 10nm Emissions for a China 6 Compliant Vehicle to Meet Future Regulation

2023-04-11
2023-01-0377
As the official proposal for emission regulation Euro 7 has been released by European Commission, PN above 10nm is taken into consideration for the ultrafine particulate emissions control. The challenges of GPF filtration efficiency emerge for the light-duty manufactures to meet the future emission standards. In the present study, a China 6 compliant vehicle was tested to reveal its performance over the China 6 standards and potential to meet the upcoming Euro 7. Three GPF product types (Gen 1, Gen 2, and concept Gen 3) were mounted to the tested vehicle. WLTC tests were conducted on chassis dynamometer in laboratory as well as a self-designed aggressive cycle (“Base Cycle”) tests. To explore the GPFs performance for PN emissions above 10nm against the proposed limit 6.0E11 #/km, PN emission above 10nm were measured in our laboratory tests for both engine out and tailpipe as well as the PN emission above 23nm.
Technical Paper

Coated Gasoline Particulate Filter Technology Development to Meet China6 PN Regulation

2020-04-14
2020-01-0387
With the introduction of stringent particulate number (PN) limits and real driving emission (RDE) requirements, gasoline particulate filters (GPFs) have been widely adopted in Europe and China. GPFs can be coated with different amounts of three-way catalyst (TWC) coating. Some applications use large amounts of washcoat (>100g/L) whereas some don’t use at all. Pressure drop (DP) and PN filtration efficiency (FE) are the top two design criteria. It is important to understand how various coating technologies can be applied to GPF technologies for optimized FE/DP performance. To study filter and coating interaction, a matrix of coated GPFs was prepared and tested for lab DP and vehicle PN based FE. The matrix includes samples with a wide range of washcoat loadings (WCLs), differing coating technologies that target more coating inside GPF filter walls (Tech A) or more on the surface of filter walls (Tech B), and GPF technologies with high and low mean pore size (MPS).
Technical Paper

Cost Effective Catalyst Solutions with Application of Low Mass Substrate to Meet China 6b Regulation Requirement

2021-04-06
2021-01-0581
With upcoming China 6b emission regulation set for full implementation in July 2023, significant efforts are being made within China OEMs to meet the stringent gaseous emission requirements, which reduce gaseous emission limits by 29 to 50% from China 6a for NOx, THC, and CO over the worldwide harmonized light-duty test cycle (WLTC). With current engine and aftertreatment technology, cold-start emissions generated in the first 200 seconds of the WLTC typically makes up most of the total tailpipe emissions result, thus the reduction of cold-start emissions becomes vital to meet regulation requirements. Besides further improvement on engine technology with optimized calibration, a common method to improve cold-start performance is to add more platinum group metals (PGM) into three-way catalyst (TWC). An alternative approach to improve cold-start performance involves using a low mass substrate to enable faster heat up of the TWC.
Technical Paper

Design Parameters and Product Characteristics for Automotive Converter

1997-12-31
973049
Catalytic converter substrates for automobile emission control have to operate under the hostile conditions of the automotive exhaust. This paper will first discuss the mechanical and physical properties to ensure durable mechanical function of the catalytic substrate and converter system. High temperature mechanical and thermal shock substrate requirements and properties will be discussed. The functionality of a catalytic converter is significantly influenced by the catalytic coating. At the same time, substrate characteristics as will be shown, also effect converter functional parameters like back pressure, light-off and conversion efficiency. The importance of the substrate parameters cell shape, cell density and substrate mass and their effect on thermohydraulic parameters like heat- and mass transfer factors for various cell structures and substrates will be presented.
Technical Paper

Modeling of Automotive Aftertreatment Catalysts

1999-12-01
1999-01-3043
Shorter new vehicle development time require new engineering methods in the concept and design phase. Therefore methods, which allow an early screening of design alternatives, have been developed and integrated in the design processes. This includes experimental (mostly bench tests) as well as simulation tools. Similar trends can be recognized in the area of exhaust gas aftertreatment. Ever tightening emissions regulations make it necessary in early stages to determine the performance of different aftertreatment concepts. Due to the fact that over 90% of the unconverted emissions occur before the converter is at operating temperature, the heat-up and light-off behavior of the converter is of major importance. In this context a numerical model has been developed to simulate the heat-up and light-off behavior.
Journal Article

Next Generation Gasoline Particulate Filters for Uncatalyzed Applications and Lowest Particulate Emissions

2021-04-06
2021-01-0584
With the introduction of EU6d and CN6 all vehicles with gasoline direct injection and many with port fuel injection engine will be equipped with a gasoline particulate filter (GPF). A range of first generation filter technologies has been introduced successfully, helping to significantly reduce the tailpipe particulate number emissions. The continued focus on particulate emissions and the increasing understanding of their impact on human health, combined with the advanced emission regulations under RDE conditions results in the desire for filters with even higher filtration efficiency, especially in the totally fresh state. At the same time, to balance with the requirements on power and CO2, limitations exist with respect to the tolerable pressure drop of filters. In this paper we will report on a new generation of gasoline particulate filters for uncatalyzed applications.
Technical Paper

Next Generations of Gasoline Particulate Filters for Catalyzed Applications

2024-04-09
2024-01-2384
Gasoline particulate filters (GPF) have become a standard aftertreatment component in Europe, China, and since recently, India, where particulate emissions are based on a particle number (PN) standard. The anticipated evolution of regulations in these regions towards future EU7, CN7, and BS7 standards further enhances the needs with respect to the filtration capabilities of the GPFs used. Emission performance has to be met over a broader range in particle size, counting particles down to 10nm, and over a broader range of boundary conditions. The requirements with respect to pressure drop, aiming for as low as possible, and durability remain similar or are also enhanced further. To address these future needs new filter technologies have been developed. New technologies for uncatalyzed GPF applications have been introduced in our previous publications.
Journal Article

Novel Lightweight Laminate Concept with Ultrathin Chemically Strengthened Glass for Automotive Windshields

2015-04-14
2015-01-1376
This paper proposes a novel concept for lightweight vehicle design, offering a step change in weight reduction for automotive glazing. Reducing window weight can be achieved by decreasing the thickness of the glass plies used to form vehicle windows. However, reducing the thickness of conventional automotive windows also decreases its effective strength; therefore, concerns about glass breakage become a limiting factor for weight reduction. Chemically strengthened ultrathin Corning® Gorilla® Glass offers the potential to go beyond existing thickness limitations. Its higher strength compared to standard soda lime window glass allows the design of thin, low weight window constructions. In addition, its unique manufacturing process delivers pristine glass surfaces and precise thickness control for high quality window optics. While this concept can be applied to all vehicle openings, this study focuses on automotive windshield design.
Technical Paper

Performance Aspects of New Catalyzed Diesel Soot Filters Based on Advanced Oxide Filter Materials

2007-04-16
2007-01-1268
Catalyzed soot filters are being fitted to an increasing range of diesel-powered passenger cars in Europe. While the initial applications used silicon carbide wall-flow filters, oxide-based filters are now being successfully applied. Oxide-based filters can offer performance and system cost advantages for applications involving both a catalyzed filter with a separate oxidation catalyst, and a catalyzed filter-only that incorporates all necessary catalytic oxidation functions. Advanced diesel catalyst technologies have been developed for alternative advanced oxide filter materials, including aluminum titanate and advanced cordierite. In the development of the advanced catalyzed filters, improvements were made to the filter material microstructures that were coupled with new catalyst formulations and novel coating processes that had synergistic effects to give enhanced overall performance.
Technical Paper

Predicting Pressure Drop of Wall-Flow Diesel Particulate Filters - Theory and Experiment

2000-03-06
2000-01-0184
Information on transport mechanisms in a Diesel Particulate Filter (DPF) provides crucial insight into the filter performance. Extensive experimental work has been pursued to modify, customize and validate a model yielding accurate predictions of a ceramic wall-flow DPF pressure drop. The model accounts, not only for the major pressure drop components due to flow through porous walls but also, for viscous losses due to channel plugs, flow contraction and expansion due to flow entering and exiting the trap and also for flow secondary inertial effects near the porous walls. Experimental data were collected on a matrix of filters covering change in filter diameter and length, cell density and wall thickness and for a wide range of flow rates. The model yields accurate predictions of DPF pressure drop with no particulate loading and, with adequate adjustment, it is also capable of making predictions of pressure drop for filters lightly-loaded with particulates.
Book

Reducing Particulate Emissions in Gasoline Engines

2018-11-28
For years, diesel engines have been the focus of particulate matter emission reductions. Now, however, modern diesel engines emit less particles than a comparable gasoline engine. This transformation necessitates an introduction of particulate reduction strategies for the gasoline-powered vehicle. Many strategies can be leveraged from diesel engines, but new combustion and engine control technologies will be needed to meet the latest gasoline regulations across the globe. Particulate reduction is a critical health concern in addition to the regulatory requirements. This is a vital issue with real-world implications. Reducing Particulate Emissions in Gasoline Engines encompasses the current strategies and technologies used to reduce particulates to meet regulatory requirements and curtail health hazards - reviewing principles and applications of these techniques.
Technical Paper

Review of Development, Properties and Packaging of Thinwall and Ultrathinwall Ceramic Substrates

2002-11-19
2002-01-3578
Driven by the worldwide automotive emission regulations, ceramic substrates were developed to serve as catalyst support. Since the introduction of Standard wall substrates in 1974, substrates with thinner walls and higher cell densities have been developed to meet the tighter emission requirements; Worldwide, the amount of Thinwall and Ultrathinwall substrates in series applications is increasing continuously. The properties of the substrates determine their performance regarding pressure drop, heat-up and conversion efficiency. These properties are analyzed, as well as the packaging process for Thinwall and Ultrathinwall substrates; A new packaging technique with lower pressure load is described.
Technical Paper

Soot Load Monitoring in Gasoline Particulate Filter Applications with RF-Sensors

2020-09-15
2020-01-2171
With the start of Euro 6d regulations, gasoline particulate filters (GPF) have become standard equipment in European vehicles with gasoline-direct-injection engines. GPFs will also be broadly applied to meet the upcoming China 6 regulations. An existing challenge with GPFs is accurate soot load detection to manage the pressure loss across the exhaust system and to protect the GPFs from soot overload, which could potentially cause damage as result of uncontrolled soot oxidations. Systems with the GPF located in the under-floor position have a higher potential risk of soot overload due to lower temperatures, which can result in higher soot accumulation rates. The accuracy of existing soot estimation methods such as evaluation of the pressure drop of the soot-loaded GPF or model-based balancing of soot accumulation versus soot oxidation rates are sensitive to transient operating condition of a vehicle.
Technical Paper

Three Way Catalyst with Faster Light-Off Substrates – A Promising Approach to Reduce Tailpipe Emissions

2024-01-16
2024-26-0142
The ever-tightening regulation norms across the world emphasize the magnitude of the air pollution problem. The decision to leapfrog from BS4 to BS6 – with further reduction in emission limits -showed India’s commitment to clean up its atmosphere. The overall cycle emissions were reduced significantly to meet BS6 targets [1]. However, the introduction of RDE norms in BS6.2 [1] demanded further reduction in emissions under real time operating conditions – start-stop, hard acceleration, idling, cold start – which was possible only through strategies that demanded a cost effective yet robust solutions. The first few seconds of the engine operation after start contribute significantly to the cycle gaseous emissions. This is because the thermal inertia of the catalytic converter restricts the rate at which temperature of the catalyst increases and achieves the desired “light-off” temperature.
X