Refine Your Search

Topic

Author

Search Results

Technical Paper

A New High Temperature Ceramic Material for Diesel Particulate Filter Applications

2000-10-16
2000-01-2844
Cordierite-based diesel particulate filters (DPFs) have been in use for heavy duty engine applications for nearly two decades. Recently, passenger car applications for DPFs have begun to appear in Europe due to tightening legislation. While cordierite-based DPFs work well in most applications, it appears that in the passenger car exhaust environment under some uncontrolled regeneration conditions, cracking and melting of the existing cordierite-based DPF products have been reported. The present paper focuses on the development of new, high temperature oxide ceramics for DPF passenger car applications. When designed properly, DPFs made from these new materials do not show cracking or melting under uncontrolled regeneration. The material properties (strength, elastic modulus, coefficient of thermal expansion, etc.) and the filter performance properties (pressure drop, regeneration durability, etc.) have been characterized for DPFs made from these new materials.
Technical Paper

Advances of Durability of Ceramic Converter Systems

1996-10-01
962372
Governing bodies world-wide are setting increasingly tighter emission standards to help improve air quality. US and Californian LEV/ULEV standards are pace setting, European Stage II legislation has just become effective. In Brazil, the upcoming 1997 standards are also demanding for tighter emission control. The monolithic ceramic honeycomb catalytic converter -for more than the past 20 years- has been a reliable key element in the automotive emission control systems. In order to help meet tightened emission regulation as well to satisfy even more stringent durability requirement, an advanced thinwall ceramic Celcor XT has been developed for increased geometric surface area and reduced backpressure. The product properties as well as FTP and ECE emission and durability test results are being described in this paper. Converter system durability is also determined by robust canning and mounting systems. A durable mounting concept, especially for preconverters, is being described.
Technical Paper

Assessment of Lightweight Automotive Glass Solutions on Interior Noise Levels & Sound Quality

2017-06-05
2017-01-1814
The automotive industry continues to develop technologies for reducing vehicle fuel consumption. Specifically, vehicle lightweighting is expected to be a key enabler for achieving fleet CO2 reduction targets for 2025 and beyond. Hybrid glass laminates that incorporate fusion draw and ion exchange innovations are thinner and thereby, offer more than 30% weight reduction compared to conventional automotive laminates. These lightweight hybrid laminates provide additional benefits, including improved toughness and superior optics. However, glazing weight reduction leads to an increase in transmission of sound through the laminates for certain frequencies. This paper documents a study that uses a systematic test-based approach to understand the sensitivity of interior vehicle noise behavior to changes in acoustic attenuation driven by installation of lightweight glass.
Technical Paper

Catalytic Converter Mat Material Durability Measurement Under Controlled Thermal and Vibration Environments

2000-03-06
2000-01-0221
To aid in the catalytic converter design and development process, a test apparatus was designed and built which will allow comparative evaluation of the durability of candidate mat materials under highly controlled thermal and vibration environments. The apparatus directly controls relative shear deflection between the substrate and can to impose known levels of mat material strain while recording the transmitted shear force across the mat material. Substrate and can temperatures are controlled at constant levels using a resistive thermal exposure (RTE) technique. Mat material fatigue after several million cycles is evident by a substantial decrease in the transmitted force. A fragility test was found to be an excellent method to quickly compare candidate materials to be used for a specific application. Examples of test results from several materials are given to show the utility of the mat material evaluation technique.
Technical Paper

Design Considerations for a Ceramic Preconverter System

1994-03-01
940744
The preconverter is an essential element of exhaust gas treatment to help meet the tighter emission standards of TLEV and LEV levels. Its design must be chosen so as to meet the simultaneous requirements of compactness, faster light-off, low back pressure, high temperature durability and low cost. This paper presents design options for a ceramic substrate and durable package which lead to an optimum and cost-effective preconverter system. Preliminary data for high temperature physical durability of selected converter systems are presented. Performance parameters for light-off activity and back pressure are also computed and compared with those of standard substrates used in underbody application. Laboratory tests comprising of axial push-out test, high temperature vibration test, exhaust gas simulation test and the engine dynamometer test demonstrate the viability of ceramic preconverters for automotive application.
Technical Paper

Durability of Extruded Electrically Heated Catalysts

1995-02-01
950404
Extruded metal honeycombs are used as electrically heated catalysts (EHCs). The durability requirements of this application make demands on high surface area, thin cross-section metal honeycombs. Significant durability improvements over previous extruded metal honeycomb EHCs have been achieved by material and package design changes. The product redesign was supported by finite element models and extensive testing. The redesigned EHC has passed severe laboratory and field testing. The tests include electrical cycling to 1000°C/1600 cycles, hot vibration to 60g/900°C and demanding on-vehicle exposure. Excellent durability of the extruded metal honeycomb has been demonstrated.
Technical Paper

Durable Packaging Design for Cordierite Ceramic Catalysts for Motorcycle Application

1993-03-01
930161
The motorcycle emissions regulations for both two-stroke and four-stroke engines, which are receiving worldwide attention, will go into effect in the very near future. To meet these regulations, the motorcycles will require a catalyst in conjunction with the muffler due to space limitations. The combination of high engine speeds, high vibrational acceleration, high HC and CO emissions, high oxidation exotherms, and stringent durability requirements, points to cordierite ceramic substrate as an ideal catalyst support. However, as an integral unit within the muffler, its packaging design must be capable of withstanding isothermal operating conditions which may exceed the upper intumescent temperature limit of the ceramic mat. This paper describes a durable packaging design for the ceramic catalyst which employs a hybrid ceramic mat, special end rings and gaskets, and high strength stainless steel can.
Technical Paper

Effect of Cell Geometry on Emissions Performance of Ceramic Catalytic Converters

2002-03-04
2002-01-0354
More stringent emissions regulations, space limitations for catalytic converters in modern automotive applications, and new engine technologies constitute design challenges for today's engineers. In that context high cell density thinwall and ultrathinwall ceramic substrates have been designed into advanced catalytic converters. Whereas the majority of these substrates have a square cell geometry, a potential for further emissions improvement has been predicted for hexagonal cell structures. In order to verify these predictions, a ceramic substrate has been developed combining the features of high cell density, ultrathin cell walls, and hexagonal cell structure. Based on modeling data, the actual cell density and wall thickness of the hexagonal cell substrate will be defined. The performance of that substrate will be assessed by comparing experimental emissions results using two modern Volkswagen engines.
Technical Paper

Effect of Contour, Size and Cell Structure on Compressive Strength of Porous Cordierite Ceramic Substrates

1993-10-01
932663
Since their introduction to automotive industry in 1975, ceramic substrates have successfully met the strength requirements for canning, engine and chassis vibrations, and thermal shock. This paper will focus on canning loads and techniques, and how they influence the stress distribution in ceramic substrates. The strength data, most relevant to canning stresses, will be presented for porous cordierite ceramic substrates as function of their contour, size and cell structure. Recent improvements in measuring the biaxial compressive strength will also be reviewed.
Journal Article

Effect of Decoration on Windshield Impact Resistance and Novel Decoration Solution Compatible with Chemical Strengthening

2022-03-29
2022-01-0263
Vehicle windshields typically include a black decorative pattern around their periphery and other regions. Examination of field failed parts has shown that windshields often break from impacts in these decoration zones; often with the fracture initiating from the decoration material itself. In this work, the effect of different glazing decoration materials on glass strength and laminate impact resistance was evaluated. The decoration materials investigated included traditional inorganic enamel frit, an organic ink, and a new enamel frit that is compatible with glass chemical strengthening. Ring-on-Ring strength tests were conducted and showed that inorganic enamel frit reduces strength of glass by over 50% compared to undecorated glass, while organic inks do not adversely affect strength. Tests of a newly developed decoration frit material, compatible for chemical strengthening processes, showed strength levels that were on par with undecorated, unstrengthened glass.
Technical Paper

Effect of Temperature on Biaxial Strength of Automotive Windshields

2000-10-03
2000-01-2722
This paper focuses on the effect of temperature on biaxial strength of curved, symmetrically laminated, automotive windshields. In view of their aspheric curvature, the measurement of biaxial strength requires a special ring-on-ring test fixture with compliant loading and support rings. The key factors that affect strength are (i) fatigue behavior of surface flaws, (ii) expansion mismatch between glass and PVB interlayer, and (iii) interfacial bond integrity. These, in turn, depend on the operating temperature which for automotive windshields can range from −40°C in winter to +50°C in summer. The data show that the biaxial strength is 21% higher at −40°C and 28% lower at +50°C than that at room temperature. An assessment of fatigue and interfacial bond integrity shows that strength changes of these magnitudes are predominantly caused by residual stresses arising from expansion mismatch between glass and PVB interlayer.
Technical Paper

Electronic and Atomistic Roles of Cordierite Substrate in Sintering of Washcoated Catalysts for Automotive Exhaust Gas Emissions Control: Multi-scale Computational Chemistry Approach based on Ultra-Accelerated Quantum Chemical Molecular Dynamics Method

2012-04-16
2012-01-1292
Multi-scale computational chemistry methods based on the ultra-accelerated quantum chemical molecular dynamics (UA-QCMD) are applied to investigate electronic and atomistic roles of cordierite substrate in sintering of washcoated automotive catalysts. It is demonstrated that the UA-QCMD method is effective in performing quantum chemical molecular dynamics calculations of crystals of cordierite, Al₂O₃ and CeZrO₄ (hereafter denoted as CZ). It is around 10,000,000 times faster than a conventional first-principles molecular dynamics method based on density-functional theory (DFT). Also, the accuracy of the UA-QCMD method is demonstrated to be as high as that of DFT. On the basis of these confirmations and comparison, we performed extensive quantum chemical molecular dynamics calculations of surfaces of cordierite, Al₂O₃ and CZ, and interfaces of Al₂O₃ and CZ with cordierite at various temperatures.
Technical Paper

Evaluation of SoftMountSM Technology for Use in Packaging UltraThinwall Ceramic Substrates

2002-03-04
2002-01-1097
Quantitative in-use pressure measurements were taken from packaging ceramic substrates with the SoftMountSM technology and two more traditional technologies, stuffing and tourniquet. Each technology was assessed using four separate mat materials. Mat selection enhanced the application of the SoftMountSM technology through the reduced pressures applied to the substrate during packaging. High temperature and low temperature thermal cycling studies were performed on the canned converters for the three packaging technologies so that an evaluation could be made of converter durability. The SoftMountSM packaging technology yielded the lowest pressures of all the processes studied, regardless of mat type. The laminar hybrid mat evaluated yielded the best combination of pressure and durability performance. Low temperature residual shear strengths following thermal cycling of the converters showed good correlation between the SoftMountSM technology and the stuffing method.
Technical Paper

Fatigue and Performance Data for Advanced Thin Wall Ceramic Catalysts

1998-02-23
980670
With stricter emissions standards, low back pressure requirements, and 100,000 mile durability specifications, ceramic catalysts have undergone significant developments over the past few years. The thrust in the ceramics area has centered on thin-wall structures to minimize back pressure and on high cell density for rapid light-off in close-coupled applications. The thin-wall structures are extruded from low expansion cordierite ceramic with adequate strength and thermal shock resistance equivalent to those of standard cordierite substrate. Examples of thin-wall substrate include 350XT which is extruded from a very low expansion dense cordierite ceramic, and 400/4 and 600/4 cell structures extruded from a low expansion modified cordierite ceramic. This paper will focus on the high fatigue resistance, excellent conversion efficiency, and low back pressure of 350 XT substrates with advanced washcoat system.
Technical Paper

High Porosity Substrates for Fast-Light-Off Applications

2015-04-14
2015-01-1009
Regulations that limit emissions of pollutants from gasoline-powered cars and trucks continue to tighten. More than 75% of emissions through an FTP-75 regulatory test are released in the first few seconds after cold-start. A factor that controls the time to catalytic light-off is the heat capacity of the catalytic converter substrate. Historically, substrates with thinner walls and lower heat capacity have been developed to improve cold-start performance. Another approach is to increase porosity of the substrate. A new material and process technology has been developed to significantly raise the porosity of thin wall substrates (2-3 mil) from 27-35% to 55% while maintaining strength. The heat capacity of the material is 30-38% lower than existing substrates. The reduction in substrate heat capacity enables faster thermal response and lower tailpipe emissions. The reliance on costly precious metals in the washcoat is demonstrated to be lessened.
Technical Paper

High Temperature Compressive Strength of Extruded Cordierite Ceramic Substrates

1995-02-01
950787
High temperature modulus of rupture (MOR) data, published previously, show that the ceramic catalyst supports get stronger with temperature due to the absence of water vapor and closure of microcracks which would otherwise act as stress concentrators [1, 2 and 3]*. The increased MOR value is partially responsible for the excellent durability of ceramic catalyst supports at high temperature. In this paper, we will present the compressive strength data of ceramic substrates at high temperature, namely the crush strength along B-axis and biaxial compressive strength of the whole substrate. Since the honeycomb strength is directly related to that of the individual cell wall, the compressive strength should also increase with temperature similar to the modulus of rupture. Accordingly, the ceramic substrates are capable of supporting higher mounting pressures exerted by the intumescent mat at high temperature [4].
Technical Paper

High Temperature Durability of Electrically Heated Extruded Metal Support

1994-03-01
940782
The design, performance and optimization of the extruded electrically heated metal converter have recently been published(1,2). The present paper focuses on the physical durability of extruded metal EHC support at high temperature representative of operating conditions. The mechanical, thermal, creep and fatigue properties of Fe-Cr-Al honeycomb structure over 25°-1000°C temperature range are reported. In addition, the stresses arising from mounting and thermal loads are computed via finite element analysis and compared with the high temperature strength of extruded metal EHC support. A safe design stress which predicts 192,000 kilometer durability is estimated from high temperature fatigue behavior of extruded Fe-Cr-Al honeycomb structure.
Technical Paper

Low Back Pressure, High Efficiency Automotive Cabin Air Odor Filters

1996-02-01
960943
Preliminary back pressure and adsorption performance results are reported for two activated carbon honeycomb materials. The carbon impregnated honeycomb (CIH) material is porous ceramic honeycomb with a complete impregnation and coating of activated carbon on all ceramic surfaces. It offers the potential to be a permanent odor filter in that it can be in situ electrically regenerated. It has adsorption performance similar to commercially available layered filters, but has much lower back pressure. The second material is an activated carbon honeycomb (ACH) and is not ceramic-based as is CIH. As such, it has much more activated carbon and superior adsorption performance. The back pressure is low, as with CIH. It has significant potential as a high-performing disposable odor filter.
Technical Paper

Measurement of Biaxial Compressive Strength of Cordierite Ceramic Honeycombs

1993-03-01
930165
The stringent durability requirements approaching 100,000 vehicle miles for automotive substrates and 290,000 vehicle miles for large frontal area diesel substrates for 1994+ model year vehicles call for advanced packaging designs with thick ceramic mats and high mount densities. The latter result in high mounting pressure on the substrate and enhance its mechanical integrity against engine vibrations, road shocks and back pressure forces. A novel measurement technique which applies a uniform biaxial compressive load on the lateral surface of ceramic substrates, thereby simulating canning loads, is described. The biaxial compressive strength data obtained in this manner help determine the maximum mounting pressure and mat density for a durable packaging design. The biaxial compressive strength data for both round and non round substrates with small and large frontal area are presented.
Technical Paper

Measurement of Biaxial Strength of New vs. Used Windshields

2000-10-03
2000-01-2721
This paper presents the strength data for conventional automotive windshields in both the new and used conditions. More specifically, the biaxial strength of outer surface of curved and symmetrically laminated windshield, measured in biaxial flexure, is reported. The relative contributions of inplane membrane stress, which can be significant for new windshields, and bending stress are quantified with the aid of strain gauge rosettes mounted on both the outer and inner surfaces of windshield. The strength distribution for new and used windshields, based on Weibull distribution function, is found to be multimodal indicating more than one family of surface flaws. Depending on handling damage during manufacturing, assembly and installation processes, the low strength region of new windshields can approach that of used windshields with 50,000+ road miles!
X