Refine Your Search

Topic

Author

Search Results

Technical Paper

A CFD Study of Diesel Substrate Channels with Differing Wall Geometries

2004-03-08
2004-01-0152
This paper describes efforts to use computational fluid dynamics (CFD) to provide some general insights on how wall-based protuberances affect the flow and thermal fields in substrates exposed to typical diesel engine exhaust conditions. The channel geometries examined included both square and round bumps as well as an extreme tortuous path design. Three different 2d CFD laminar-flow analyses were performed: (1) a transient fluid analysis to identify the existence of any vortex shedding in the vicinity of the bumps, (2) a steady-state fluid analysis to examine the velocity and pressure fields as well as momentum transport characteristics, and (3) a thermal analysis to examine the heat transport characteristics. The model predicts no vortex shedding behind the bumps for the conditions and geometries examined, confirming the validity of a steady state approach and eliminating this possible transport mechanism.
Technical Paper

Acoustic Modeling for Three-Dimensional Lightweight Windshields

2018-04-03
2018-01-0141
In the auto industry, lightweight window designs are drawing more attention for improved gas mileage and reduced exhaust emission. Corning’s Gorilla® Glass used in laminate design enables more than 30% weight reduction compared to conventional soda-lime glass laminates. In addition, Gorilla® Glass hybrid laminates (which are a laminate construction of a thick soda-lime glass outer play, a middle polyvinyl butyral interlayer, and a thin Gorilla Glass inner ply) also show significantly improved toughness due to advanced ion-exchange technology that provides high-surface compression. However, the reduced mass also allows increased transmission of sound waves through the windshield into the vehicle cabin. A system-level measurement approach has always been employed to assess overall vehicle acoustic performance by measuring sound pressure levels (SPL) at the driver’s ears. The measured sound signals are usually a superimposition of a variety of noise sources and transmission paths.
Technical Paper

Advanced Mounting System for Light Duty Diesel Filter

2007-04-16
2007-01-0471
This paper employs a systematic approach to packaging design and testing of a system and its components in order to determine the long term durability of light duty diesel filters. This effort has utilized a relatively new aluminum titanate filter technology as well as an advanced support mat technology engineered to provide superior holding force at lower temperatures while maintaining its high temperature performance. Together, these two new technologies form a system that addresses the unique operating conditions of diesel engines. Key physical properties of both the filter and the mat are demonstrated through laboratory testing. The system behavior is characterized by various laboratory techniques and validation procedures.
Technical Paper

Aluminum Titanate Compositions for Diesel Particulate Filters

2005-04-11
2005-01-0583
Compositions in the mixed strontium/calcium feldspar ([Sr/Ca]O·Al2O3·2SiO2) - aluminum titanate (Al2O3·TiO2) system have been investigated as alternative materials for the diesel particulate filter (DPF) application. A key attribute of these compositions is their low coefficient of thermal expansion (CTE). Samples have been prepared with porosities of >50% having average pore sizes of between 12 and 16μm. The superior thermal shock resistance, increased resistance to ash attack, and high volumetric heat capacity of these materials, coupled with monolithic fabrication, provide certain advantages over currently available silicon carbide products. In addition, based on testing done so far aluminum titanate-based filters have demonstrated chemical durability and comparable pressure drop (both bare and catalyzed) to current, commercially available, silicon carbide products.
Technical Paper

Ash Storage Concept for Diesel Particulate Filters

2004-03-08
2004-01-0948
Ash accumulation in heavy duty and light duty diesel filters has become a growing concern due to its negative impact on filter performance over time. Performance issues include increased backpressure and increased fuel penalty. An additional concern is frequency of filter ash cleaning which contributes to overall maintenance and operational costs. A new ash storage concept filter is discussed in this paper. This concept proposes an exchange between inlet and outlet cells, redistributing surface area and volume resulting in more ash storage and improved pressure drop over traditional filters. Overall filter performance (pressure drop, regeneration, ash/ceramic interactions) was evaluated in the laboratory and results are reported in this paper. This paper will discuss in detail the ash storage concept and its benefits in filter performance.
Technical Paper

Comparative Analysis of Different Heavy Duty Diesel Oxidation Catalysts Configurations

2004-03-08
2004-01-1419
Diesel Oxidation Catalyst in conjunction with large frontal area substrates is a key element in HDV Diesel emission control systems. This paper describes and reviews tests on a set of various Diesel Oxidation Catalyst configurations (for example cell densities), all with the same catalyst coating. The Diesel Oxidation Catalyst specimens were subjected to the European Stationary Cycle (ESC), the European Transient Cycle (ETC), and the US heavy duty Federal Test Procedure (US FTP). The focus was to study relative emissions, pressure drop, and light-off performance. All tests were conducted using the same Detroit Diesel Series 60 engine operating on ultra low sulfur diesel fuel. In addition to this, the exhaust was regulated so that the backpressure on the engine, upstream of the catalyst was also the same for all catalysts.
Technical Paper

Demonstration of High Temperature Durability for Oval Ceramic Catalytic Converters-2

1998-02-23
980042
The design of a canned ceramic oval converter, 77mm by 146.8mm, is described along with subsequent demonstration of its high temperature (1050°C) durability. A new mat deterioration phenomenon was recognized, and will be described. The mat deterioration results from sintering of the vermiculite and glass fiber structure when exposed to temperatures greater than approximately 1000°C. Due to the extremely high temperature experienced in the supporting mat of an oval converter exposed to 1050°C, an alternative mat configuration was utilized to eliminate potential mat sintering. An inner layer of non-intumescent mat (1500g/m2) was used in conjunction with an outer layer of intumescent mat (3100g/m2). The inner mat provided sufficient thermal protection to the outer intumescent mat, maintaining considerable holding pressure on the ceramic substrate. A tourniquet closure technique was developed to uniformly compress a hybrid mat system around the entire perimeter of the oval converter.
Technical Paper

Design Considerations for Advanced Ceramic Catalyst Supports

2000-03-06
2000-01-0493
Stringent emissions standards with 95+% conversion efficiency requirements call for advanced ceramic catalyst supports with thinner walls, higher cell density and optimum cell shape. The extrusion technology for cellular ceramics has also made significant progress which permits the manufacture of advanced catalyst supports. Similarly, modifications in cordierite chemistry and the manufacturing process have led to improved microstructure from coatability and thermal shock points of view. The design of these supports, however, requires a systems approach to balance both the performance and durability requirements. Indeed as the wall gets thinner, the contribution of washcoat becomes more significant in terms of thermal mass, heat transfer, thermal expansion, hydraulic diameter and structural stiffness - all of which have an impact on performance and durability. For example, the thinner the wall is, the better the light-off performance will be.
Technical Paper

Diesel Emission Control in Review – The Last 12 Months

2003-03-03
2003-01-0039
Driven mainly by tightening of regulations, advance diesel emission control technologies are rapidly advancing. This paper will review the field with the intent of highlighting representative studies that illustrate the state-of-the-art. First, the author makes estimates of the emission control efficiency targets for heavy and light duty applications. Given the emerging significance of ultrafines to health, and to emission control technologies, an overview of the significant developments in ultrafine particulate science is provided, followed by an assessment of filter technology. Major deNOx catalyst developments, in addition to SCR and LNT progress is described. Finally, system integration examples are provided. In general, progress is impressive and studies have demonstrated that high-efficiency systems are within reach in all sectors highway vehicle sectors. Engines are making impressive gains, and will increase the options for emission control.
Technical Paper

Diesel SCR NOx Reduction and Performance on Washcoated SCR Catalysts

2004-03-08
2004-01-1293
This paper describes a study of ternary V2O5/WO3/TiO2 SCR catalysts coated on standard Celcor® and new highly porous cordierite substrates. At temperatures below 275°C, where NOx conversion is kinetically limited, high catalyst loadings are required to achieve high conversion efficiencies. In principle there are two ways to achieve high catalyst loadings: 1. On standard Celcor® substrates the washcoat thickness can be increased. 2. With new highly porous substrates a high amount of washcoat can be deposited in the walls. Various catalyst loadings varying from 120g/l to 540 g/l were washcoated on both standard Celcor® and new high porosity cordierite substrates with standard coating techniques. Simulated laboratory testing of these samples showed that high catalyst loadings improved both low temperature conversion efficiency and high temperature ammonia storage capacity and consequently increased the overall conversion efficiency.
Technical Paper

Effect of Windshield Design on High Speed Impact Resistance

2000-10-03
2000-01-2723
An axisymmetric finite element model is generated to simulate the windshield glass damage propagation subjected to impact loading of a flying object. The windshield glass consists of two glass outer layers laminated by a thin poly-vinyl butyral (PVB) layer. The constitutive behavior of the glass layers is simulated using brittle damage mechanics model with linear damage evolution. The PVB layer is modeled with linear viscoelastic solid. The model is used to predict and examine through-thickness damage evolution patterns on different glass surfaces and cracking patterns for different windshield designs such as variations in thickness and curvatures.
Technical Paper

Evaluation of a Stronger Ultra Thin Wall Corning Substrate for Improved Performance

2005-04-11
2005-01-1109
Current trends in automotive emissions control have tended towards reduced mass substrates for improved light-off performance coupled with a reduction in PGM levels. This trend has led to increasingly thinner walls in the substrates and increased open frontal areas, with a potential of reducing the overall mechanical strength of the substrate relative to the thicker walled lower cell density supports. This change in demand driven technology has also led to developments, at times costly, in the processing of the catalytic converter system. Changes in mat materials, handling technology and coating variables are only a few sources of overall increased system costs. Corning has introduced the Celcor® XS™ product to the market which significantly increases the strength of thin and ultra thin walled substrates.
Technical Paper

Factors Affecting Severity of Oven Shock Test for Ceramic Substrates

2003-10-27
2003-01-3074
The oven shock test is an accelerated test which is often used to quantify the thermal durability of both coated and uncoated ceramic substrates. The test calls for heating the substrate for 30 minutes in an oven, which is preheated to specified temperature, and then cooling it in ambient environment for 30 minutes. Such a cycle induces axial and tangential stresses, during cooling, in the skin region whose magnitude depends on physical properties, oven temperature, radial temperature gradient and the aspect ratio of substrate. In addition, these stresses vary with time; their maximum values occur as soon as the substrate is taken out of the oven. This paper evaluates the severity of thermal stresses as function of above factors and estimates the probability and mode of failure during cooling using thermocouple data. Methods to reduce these stresses are discussed.
Technical Paper

Impact of Catalyst Support Design Parameters on FTP Emissions

1989-09-01
892041
This study investigated the performance of various designs of ceramic monolithic catalyst supports for automotive emissions control. A test was conducted to examine the relationship of monolith volume, precious metal loading, cell density, and monolith frontal area on FTP emissions. The conclusion is that higher volume and/or higher cell density monoliths will yield improved catalytic performance using equal or less total precious metal per converter.
Journal Article

Impact of Ceramic Substrate Web Thickness on Emission Light-Off, Pressure Drop, and Strength

2008-04-14
2008-01-0808
The effect of web thickness on emission performance, pressure drop, and mechanical properties was investigated for a series of catalyzed ceramic monolith substrates having cell densities of 900, 600 and 400 cpsi. As expected, thinner webs provide better catalyst light off performance and lower pressure drop, but mechanical strength generally decreases as web thickness is reduced. Good correlations were found between emission performance and geometric parameters based on bare and coated parts. An improved method for estimating the effects of cell density and web thickness on bare substrate strength is described, and the effect of porosity on material strength is also examined. New mechanical strength correlations for ceramic honeycombs are presented. The availability of a range of ceramic product geometries provides options for gasoline exhaust emission design and optimization, especially where increased levels of performance are desired.
Technical Paper

Impact of Ultra Thinwall Catalyst Substrates for TIER2 Emission Standards

2003-03-03
2003-01-0658
The impact of ultra thinwall catalysts on TIER2 emission performance, packaging and total system cost was evaluated. The primary focus was to compare ultra-thinwall and thinwall cell configurations (400/3, 400/4, 600/2, 600/3, 600/3 hex, 900/2, and 1200/2) with a baseline 600/4 at constant substrate volume, washcoat and PGM loading. Other areas investigated included the evaluation of decreasing catalyst volume while maintaining constant or increased mass transfer capabilities while holding washcoat and PGM loadings constant. The emissions impact of varying washcoat and PGM loading was measured on specific substrates, including a comparison of square to hex cell. Backpressure for each configuration was calculated with the Corning substrate pressure drop modeling tool. Converters were rapid aged on dynamometers reflecting approximately a 50,000 mile aged performance. Emission testing was completed using the FTP test cycle.
Technical Paper

Isostatic Strength of Extruded Cordierite Ceramic Substrates

2004-03-08
2004-01-1135
This paper provides elastic analysis of compressive stresses in the matrix and skin regions of automotive substrates during 3D- and 2D-isostatic strength testing. The matrix region is treated as transversely isotropic material and the skin region as isotropic material, each with their independent elastic properties. Such a solution helps quantify load sharing by the matrix and skin regions which, in turn, affect compressive stresses in each region. The analysis shows that the tangential compressive stresses in the skin and matrix differ significantly at the interface due to high stiffness ratio of skin versus matrix. The resulting strain in the skin is more severe for thin and ultrathin wall substrates and may lead to localized bending of interfacial cells thereby inducing premature failure. Methods to reduce compressive strain in both the matrix and skin without affecting performance-related advantages are discussed.
Technical Paper

Low Temperature Catalytic Converter Durability

2000-03-06
2000-01-0220
In this study quantitative techniques were established to assess the low temperature durability of commercially available mat systems. A new low temperature dynamic resistive thermal exposure (LT-RTE) test method was developed. The mats were evaluated in thermal cycling with maximum substrate skin temperatures from 280°C to 450°C. Results indicate that at low use temperatures the residual shear strength of the mat fell to ∼5-15KPa following 280°C cycling. Under the same LT-RTE exposure conditions an equivalent mat system, following thermal preconditioning to 500°C for 3 hours, possessed a residual shear strength of ∼30KPa. An alternative mat system with a lower shot content fiber was also evaluated, following the same thermal preconditioning previously described. This alternative mat was found to exhibit substantially higher residual shear strengths following LT-RTE aging. A residual shear strength of ∼95KPa was observed for this alternative mat following 280°C LT-RTE aging.
Technical Paper

Modeling of SCR DeNOx Catalyst - Looking at the Impact of Substrate Attributes

2003-03-03
2003-01-0845
The present work intends to examine the selective NOx reduction efficiency of a current commercial Titanium-Vanadium washcoated catalyst and to develop a transient numerical model capable of describing the SCR process while using a wide range of inlet conditions such as space velocity, oxygen concentrations, water concentration and NO2/NO ratio. The concentrations of different components (NO, NO2, N2O, NH3, H2O and HNO3) were analyzed continuously by a FT-IR spectrometer. A temperature range from 150°C up to 650°C was examined and tests were carried out using a model exhaust gas comparable to the real diesel exhaust gas composition. There is a very good correlation between experimental and calculated results with the given chemical kinetics.
Technical Paper

On-Vehicle Fuel Cut Testing for Gasoline Particulate Filter Applications

2019-04-02
2019-01-0968
With the introduction of a stringent particulate number (PN) limit and real driving emission (RDE) requirements, gasoline particulate filters (GPF) are widely adopted for gasoline engines in Europe and China. The filter collects soot and ash. Like in diesel applications, the collected soot will continuously burn under favorable exhaust conditions. However, at extreme conditions, there could be large amounts of soot build-up, which may induce a highly exothermal event, potentially damaging the filter. Thus, it is important to understand what drives the over-heating in application, and develop counter measures. In this study, an on-vehicle fuel cut (FC) testing procedure was developed. The testing was conducted on two vehicles, one gasoline direct injection (GDI) vehicle and one multiple port injection (MPI) vehicle, with different exhaust systems designs (a close coupled GPF and an under floor GPF) and catalyst coating levels (bare and heavily coated GPFs).
X