Refine Your Search

Search Results

Viewing 1 to 2 of 2
Technical Paper

Evaluation of In-Line Adsorber Technology

1997-02-24
970267
To meet tightening emissions standards, alternate pollution abatement technologies are necessary, such as an In-Line Adsorber (ILA) system. The ILA has a first catalyst, an adsorber, and a second catalyst. A diverter directs exhaust gas through the adsorber to capture unconverted hydrocarbons until the first catalyst reaches light-off temperature. The ILA system was designed so that the second catalyst becomes active concurrent with the adsorber hydrocarbon desorption. The system was evaluated using the FTP test with two different secondary air strategies on 3.8 liter V6 and 4.0 liter V8 vehicles. The ILA system performance consistently reduced ∼50-60% of cold start hydrocarbon emissions. This study examined a simplified ILA system designed to operate with a commercial secondary air pump powered by the engine.
Technical Paper

Performance of Different Cell Structure Converters A Total Systems Perspective

1998-10-19
982634
The objective of this effort was to develop an understanding of how different converter substrate cell structures impact tailpipe emissions and pressure drop from a total systems perspective. The cell structures studied were the following: The catalyst technologies utilized were a new technology palladium only catalyst in combination with a palladium/rhodium catalyst. A 4.0-liter, 1997 Jeep Cherokee with a modified calibration was chosen as the test platform for performing the FTP test. The experimental design focused on quantifying emissions performance as a function of converter volume for the different cell structures. The results from this study demonstrate that the 93 square cell/cm2 structure has superior performance versus the 62 square cell/cm2 structure and the 46 triangle cell/cm2 structure when the converter volumes were relatively small. However, as converter volume increases the emissions differences diminish.
X