Refine Your Search

Search Results

Viewing 1 to 6 of 6
Technical Paper

Correlating Port Fuel injection to Wetted Fuel Footprints on Combustion Chamber Walls and UBHC in Engine Start Processes

2003-10-27
2003-01-3240
Unburned hydrocarbon (UBHC) emissions from gasoline engines remain a primary engineering research and development concern due to stricter emission regulations. Gasoline engines produce more UBHC emissions during cold start and warm-up than during any other stage of operation, because of insufficient fuel-air mixing, particularly in view of the additional fuel enrichment used for early starting. Impingement of fuel droplets on the cylinder wall is a major source of UBHC and a concern for oil dilution. This paper describes an experimental study that was carried out to investigate the distribution and “footprint” of fuel droplets impinging on the cylinder wall during the intake stroke under engine starting conditions. Injectors having different targeting and atomization characteristics were used in a 4-Valve engine with optical access to the intake port and combustion chamber.
Technical Paper

Effects of Injection Timings and Intake Port Flow Control on the In-Cylinder Wetted Fuel Footprints during PFI Engine Startup Process

2005-05-11
2005-01-2082
Wall-wetting due to liquid fuel film motion and fuel droplet impingement on combustion chamber walls is a major source of unburned hydrocarbons (UBHC), and is a concern for oil dilution in PFI engines. An experimental study was carried out to investigate the effects of injection timing, a charge motion control device, and the matching of injector with port geometry, on the “footprints” of liquid fuel inside the combustion chamber during the PFI engine starting process. Using a gasoline-soluble dye and filter paper deployed on the cylinder liner and piston top land surfaces to capture the liquid fuel footprints, the effects of the mixture formation processes on the wetted footprints can be qualitatively and quantitatively examined by comparing the wetted footprint locations and their color intensities. Real-time filming of the development of wetted footprints using a high-speed camera can also show the time history of the fuel wetting process inside an optically accessible engine.
Technical Paper

High Frequency Ignition System for Gasoline Direct Injection Engines

2011-04-12
2011-01-1223
A high-frequency electrical resonance-based ignition concept is in development to replace conventional spark ignition functionality for gasoline engines employing various types of fuel injection methods. The concept provides the benefit of a continuous discharge phase and the electrical power of the discharge can also be adjusted to the needs of the combustion conditions. This concept employs an alternative method of generating high voltages, using inductors and capacitors trimmed such that the supplied energy steadily increases the output voltage. This configuration is widely known as Tesla transformer and has been engineered to operate in a modern gasoline engine combustion environment. This development allows very high break down voltages to be generated and the power into the spark itself can be influenced.
Technical Paper

Improved Electrical Harness Performance for Commercial and Off-Road Vehicles

2007-10-30
2007-01-4158
This paper is intended to identify typical problems encountered with commercial and off-road vehicle electrical wiring harnesses, and to offer methods to reduce those problems. It identifies the key steps in the design, manufacturing, and vehicle installation phases that ultimately impact wiring performance. Finally, for these various wiring key steps, best practice engineering recommendations are provided.
Technical Paper

Non-contact Pressure Switch Package Optimization for Improved Reliability of Diagnostics in Automatic Transmissions

2010-04-12
2010-01-0187
Modern automatic transmissions use various methods to estimate fluid line pressures in order to improve shift quality and reduce energy losses. These estimations lead to improvements in fuel economy, customer satisfaction and reduced exhaust emissions. The further addition of pressure feedback switches improves operational knowledge by verifying when clutches have received their commanded pressures. Product reliability above the industry standard for transmission pressure switches was developed through the use of multiple FEA platforms combined with advanced design optimization software, robust optimization and Shainin® tools. In this optimized design, ferromagnetic non-contact pressure switches operate by translating fluid pressure into piston motion, isolated by a sealed proprietary diaphragm.
Technical Paper

Thermal Modeling for Heated Tip Injectors

2010-04-12
2010-01-1264
Brazilian ethanol vehicles are typically equipped with an auxiliary gasoline sub-tank fuel system which aids cold starting and drivability for low ambient temperatures. Port fuel injectors capable of rapidly heating ethanol have been developed to eliminate this auxiliary system. These injectors also enable reductions in emissions. Computational Fluid Dynamics (CFD) is used in conjunction with Taguchi Robust Engineering methods to optimize the heat exchanging geometry of these heated injectors. Simulation results are confirmed with experimental hardware and engine cold start testing. Modeling results, experimental hardware, and engine cold start performance is presented and discussed.
X