Refine Your Search

Topic

Search Results

Viewing 1 to 14 of 14
Book

Active Safety and the Mobility Industry

2011-04-11
Safety is a key element in new vehicle design and active safety, together with driver distraction prevention, has become one of the most talked about issues in the mobility industry. This book features 20 SAE technical papers, originally published in 2009 and 2010, which showcase how the mobility industry is considering all aspects of safety in designing and producing safer vehicles. These papers were selected by SAE International's 2010 President Dr. Andrew Brown Jr., Executive Director and Chief Technologist for Delphi Corporation. The contents of this book explore a variety of safety issues in the areas of market and consumer preferences; driver assistance and modeling; active safety system, crash sensing and sensor fusion; communications; and road safety. The publication also includes a number of articles authored by renowned experts in the field of active safety.
Technical Paper

Correlating Port Fuel injection to Wetted Fuel Footprints on Combustion Chamber Walls and UBHC in Engine Start Processes

2003-10-27
2003-01-3240
Unburned hydrocarbon (UBHC) emissions from gasoline engines remain a primary engineering research and development concern due to stricter emission regulations. Gasoline engines produce more UBHC emissions during cold start and warm-up than during any other stage of operation, because of insufficient fuel-air mixing, particularly in view of the additional fuel enrichment used for early starting. Impingement of fuel droplets on the cylinder wall is a major source of UBHC and a concern for oil dilution. This paper describes an experimental study that was carried out to investigate the distribution and “footprint” of fuel droplets impinging on the cylinder wall during the intake stroke under engine starting conditions. Injectors having different targeting and atomization characteristics were used in a 4-Valve engine with optical access to the intake port and combustion chamber.
Journal Article

Development and Optimization of Intermediate Lock Position Camshaft Phaser System

2010-04-12
2010-01-1192
Intake camshaft retard beyond that necessary for reliable cold start-ability is shown to improve part-load fuel economy. By retarding the intake camshaft timing, engine pumping losses can be reduced and fuel economy significantly improved. At high engine speeds, additional intake cam retard may also improve full-load torque and power. To achieve these benefits, an intake camshaft phaser with intermediate lock pin position (ILP) and increased phaser authority was developed. ILP is necessary to reliably start at the intermediate phase position for cold temperatures, while providing increased phaser retard under warm conditions. The phaser also provides sufficient intake advance to maximize low-speed torque and provides good scavenging for boosted engine applications. Design and development of the intermediate locking phaser system is described. The pros and cons of various methods of accomplishing locking and unlocking a phaser are illustrated.
Technical Paper

Effects of Injection Timings and Intake Port Flow Control on the In-Cylinder Wetted Fuel Footprints during PFI Engine Startup Process

2005-05-11
2005-01-2082
Wall-wetting due to liquid fuel film motion and fuel droplet impingement on combustion chamber walls is a major source of unburned hydrocarbons (UBHC), and is a concern for oil dilution in PFI engines. An experimental study was carried out to investigate the effects of injection timing, a charge motion control device, and the matching of injector with port geometry, on the “footprints” of liquid fuel inside the combustion chamber during the PFI engine starting process. Using a gasoline-soluble dye and filter paper deployed on the cylinder liner and piston top land surfaces to capture the liquid fuel footprints, the effects of the mixture formation processes on the wetted footprints can be qualitatively and quantitatively examined by comparing the wetted footprint locations and their color intensities. Real-time filming of the development of wetted footprints using a high-speed camera can also show the time history of the fuel wetting process inside an optically accessible engine.
Journal Article

Estimation Algorithms for Low Pressure Cooled EGR in Spark-Ignition Engines

2015-04-14
2015-01-1620
Low-pressure, Cooled Exhaust Gas Recirculation (LPC EGR) brings significant fuel economy, NOx reduction and knock suppression benefits to a modern, boosted, downsized Spark Ignition (SI) engine. As a prerequisite to design an engine control system for LPC EGR, this paper presents development of a set of estimation algorithms to accurately estimate the flow rate, pressure states and thermal states of the LPC EGR-related components.
Technical Paper

Estimation of Vehicle Roll Angle and Side Slip for Crash Sensing

2010-04-12
2010-01-0529
Estimation of vehicle roll angle, lateral velocity and side slip angle for the purpose of crash sensing is considered. Only roll rate sensor and the sensors readily available in vehicles equipped with ESC (Electronic Stability Control) systems are used in the estimation process. The algorithms are based on kinematic relationships, thus avoiding dependence on vehicle and tire models, which minimizes tuning efforts and sensitivity to parameter variations. The estimate of roll angle is obtained by blending two preliminary estimates, each valid in different conditions, in such a manner that the final estimate continuously favors the more accurate one. The roll angle estimate is used to compensate the gravity component in measured lateral acceleration due to vehicle roll or road bank angle. This facilitates estimation of lateral velocity and side slip angle from fundamental kinematic relationships involving the gravity-compensated lateral acceleration, yaw rate and longitudinal velocity.
Book

Green Technologies and the Mobility Industry

2010-11-16
This book features 20 SAE technical papers, originally published in 2009 and 2010, which showcase how the mobility industry is developing greener products and staying responsive - if not ahead of - new standards and legal requirements. These papers were selected by SAE International's 2010 President Dr. Andrew Brown Jr., Executive Director and Chief Technologist for Delphi Corporation. Authored by international experts from both industry and academia, they cover a wide range of cutting-edge subjects including powertrain electrification, alternative fuels, new emissions standards and remediation strategies, nanotechnology, sustainability, in-vehicle networking, and how various countries are also stepping up to the "green challenge".
Technical Paper

High Frequency Ignition System for Gasoline Direct Injection Engines

2011-04-12
2011-01-1223
A high-frequency electrical resonance-based ignition concept is in development to replace conventional spark ignition functionality for gasoline engines employing various types of fuel injection methods. The concept provides the benefit of a continuous discharge phase and the electrical power of the discharge can also be adjusted to the needs of the combustion conditions. This concept employs an alternative method of generating high voltages, using inductors and capacitors trimmed such that the supplied energy steadily increases the output voltage. This configuration is widely known as Tesla transformer and has been engineered to operate in a modern gasoline engine combustion environment. This development allows very high break down voltages to be generated and the power into the spark itself can be influenced.
Technical Paper

In-Vehicle Networking Technology for 2010 and Beyond

2010-04-12
2010-01-0687
This paper is an overview of the current state (calendar year 2010) of in-vehicle multiplexing and what pertinent technologies are emerging. Usage and trends of in-vehicle networking protocols will be presented and categorized. The past few years have seen a large growth in the number and type of communication buses used in automobiles, trucks, construction equipment, and military, among others. Development continues even into boating and recreation vehicles. Areas for discussion will include SAE Class A, B, C, Diagnostics, SafetyBus, Mobile Media, Wireless, and X-by-Wire. All existing mainstream vehicular multiplex protocols (approximately 40) are categorized using the SAE convention as well as categories previously proposed by this author. Top contenders will be pointed out along with a discussion of the protocol in the best position to become the industry standard in each category.
Technical Paper

Individual Cylinder Fuel Control for Imbalance Diagnosis

2010-04-12
2010-01-0157
This paper identifies a select method for performing cylinder imbalance measurement, correction and diagnosis. The impetus is to address new U.S. Federal regulations that require the detection of excessive cylinder air-fuel ratio (AFR) imbalance, and doing so requires the foundational ability to measure and preferably remove cylinder imbalance via active closed-loop control. This function is called Individual Cylinder Fuel Control (ICFC). ICFC starts by extracting cylinder-imbalance information from the front oxygen sensor, and that information comes in the form a of continuous data stream. That stream is then parsed to create virtual sensors- one for each cylinder. Each virtual sensor acts as an imbalance or error signal which ICFC uses to correct and learn via feedback and feed-forward control for each cylinder. The cylinder imbalance diagnostic is enabled by the presence of ICFC.
Technical Paper

Minimizing Gasoline Direct Injection (GDi) Fuel System Pressure Pulsations by Robust Fuel Rail Design

2011-04-12
2011-01-1225
Gasoline direct injection (GDi) engines have become popular due to their inherent potential for reduction of exhaust emissions and fuel consumption to meet increasingly stringent environmental standards. These engines require high-pressure fuel injection in order to improve the fuel atomization process and accelerate mixture preparation. To achieve a lower-cost system, a single-piston high-pressure fuel pump design is often employed due to its relative simplicity. However, pumps of this design are acknowledged as the source of high levels of fuel pressure fluctuations which can lead to audible noise, variations in the amount and spray quality of fuel delivery from cylinder to cylinder, compromised durability and consumer dissatisfaction. In this paper, the design process for a high-pressure fuel rail assembly using Robust Engineering methodology is presented.
Technical Paper

Molecular Analysis of Automotive Electrical Components Contaminated with Engine and Powertrain Performance Fluids

2016-04-05
2016-01-0422
Samples of 33% glass filled and unfilled poly(butylene terephthalate) [PBT] and nylon 66 (PA66) were injection molded into bars,which were immersed in common engine and powertrain fluids: antifreeze, motor oil and automatic transmission fluid for 25 days. Fluid uptake was measured at 1, 7, 18, and 25 days by gravimetry. Both PBT samples absorbed 0.2-0.25% antifreeze and 0.05 - 0.10% motor oil and automatic transmission fluid (ATF). Both DSC and DMA analysis showed no disruption of polymer thermal transitions or storage moduli. The glass filled PA66 sample absorbed 2.5% antifreeze and 0.25-0.3% of motor oil and ATF and showed an 80°C reduction in the tan delta maximum on DMA. The unfilled PA66 sample absorbed 7% antifreeze and 0.2-0.3% of motor oil and ATF also showed a tan delta maximum 80°C less than the unexposed control. Creep analysis was conducted on the unfilled nylon sample and compared to a virgin material.
Book

Occupant and Vehicle Responses in Rollovers

2004-03-08
During the past decade, there has been a steady increase in studies addressing rollover crashes and injuries. Though rollovers are not the most frequent crash type, they are significant with respect to serious injury and interest in rollovers has grown with the introduction of SUVs, vans, and light trucks. A review of Occupant and Vehicle Responses in Rollovers examines relevant conditions for field roll overs, vehicle responses, and occupant kinetics in the vehicle. This book edited by Dr. David C. Viano and Dr. Chantal S. Parenteau includes 62 technical documents covering 15 years of rollover crash safety, including field crash statistics, pre- and rollover dynamics, test procedures and dummy responses.
Technical Paper

Phase Diagrams of Different Modes of Misfire Calculated from the Digital Fourier Transformation of Angular Crankshaft Velocity

2010-04-12
2010-01-0167
Certain harmonics of angular crankshaft velocity are indicative of engine imbalance induced by cylinder misfire. Application of the Digital Fourier Transformation (DFT) facilitates the production-feasible calculation of a singular index in the frequency domain indicative either of smooth engine operation or misfire. The phase of that particular index with proper interpretation directly points to a misfiring cylinder. The identification of a misfiring pair, either opposing or a non-opposing in the cylinder bank, requires a bit more sophisticated approach since the phase response of the characteristic index in the frequency domain becomes more complex. The method demonstrated here was successfully applied in real time in four-, six-, and eight-cylinder engines, both SI and Diesel, for the On-Board Diagnostic application with reliability exceeding relevant regulatory requirements.
X