Refine Your Search

Search Results

Viewing 1 to 5 of 5
Journal Article

Development and Optimization of Intermediate Lock Position Camshaft Phaser System

2010-04-12
2010-01-1192
Intake camshaft retard beyond that necessary for reliable cold start-ability is shown to improve part-load fuel economy. By retarding the intake camshaft timing, engine pumping losses can be reduced and fuel economy significantly improved. At high engine speeds, additional intake cam retard may also improve full-load torque and power. To achieve these benefits, an intake camshaft phaser with intermediate lock pin position (ILP) and increased phaser authority was developed. ILP is necessary to reliably start at the intermediate phase position for cold temperatures, while providing increased phaser retard under warm conditions. The phaser also provides sufficient intake advance to maximize low-speed torque and provides good scavenging for boosted engine applications. Design and development of the intermediate locking phaser system is described. The pros and cons of various methods of accomplishing locking and unlocking a phaser are illustrated.
Technical Paper

Estimation and Control of Turbocharged Engines

2008-04-14
2008-01-1013
This paper presents production Engine Management System algorithms for Estimation and Control of Turbocharged engines with the following qualities; 1) Model based ensuring applicability at all ambient conditions, 2) Does not require Turbine data for calibration 3) Estimation logic form allows reuse for control applying predictive values for response and stability 4) Applies to all Waste-Gate types; passive and active, pneumatic and electrical, 5) Does not require Waste-Gate position measurement 5) Applies to engines with Variable Geometry Turbine.
Technical Paper

Estimation of Vehicle Roll Angle and Side Slip for Crash Sensing

2010-04-12
2010-01-0529
Estimation of vehicle roll angle, lateral velocity and side slip angle for the purpose of crash sensing is considered. Only roll rate sensor and the sensors readily available in vehicles equipped with ESC (Electronic Stability Control) systems are used in the estimation process. The algorithms are based on kinematic relationships, thus avoiding dependence on vehicle and tire models, which minimizes tuning efforts and sensitivity to parameter variations. The estimate of roll angle is obtained by blending two preliminary estimates, each valid in different conditions, in such a manner that the final estimate continuously favors the more accurate one. The roll angle estimate is used to compensate the gravity component in measured lateral acceleration due to vehicle roll or road bank angle. This facilitates estimation of lateral velocity and side slip angle from fundamental kinematic relationships involving the gravity-compensated lateral acceleration, yaw rate and longitudinal velocity.
Book

Occupant and Vehicle Responses in Rollovers

2004-03-08
During the past decade, there has been a steady increase in studies addressing rollover crashes and injuries. Though rollovers are not the most frequent crash type, they are significant with respect to serious injury and interest in rollovers has grown with the introduction of SUVs, vans, and light trucks. A review of Occupant and Vehicle Responses in Rollovers examines relevant conditions for field roll overs, vehicle responses, and occupant kinetics in the vehicle. This book edited by Dr. David C. Viano and Dr. Chantal S. Parenteau includes 62 technical documents covering 15 years of rollover crash safety, including field crash statistics, pre- and rollover dynamics, test procedures and dummy responses.
Technical Paper

Replacing Volumetric Efficiency Calibration Look-up Tables with Artificial Neural Network-based Algorithm for Variable Valve Actuation

2010-04-12
2010-01-0158
Signal processing incorporating Artificial Neural Networks (ANN) has been shown to be well suited for modeling engine-related performance indicators [ 1 , 2 , 3 ] that require multi-dimensional parametric calibration space. However, to obtain acceptable accuracy, traditional ANN implementation may require processing resources beyond the capability of current engine controllers. This paper explores the practicality of implementing an ANN-based algorithm performing real-time calculations of the volumetric efficiency (VE) for an engine with variable valve actuation (phasing and lift variation). This alternative approach was considered attractive since the additional degree of freedom introduced by variable lift would be cumbersome to add to the traditional multi-dimensional table-based representation of VE.
X